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Abstract

This article is an unaltered and faithful reproduction of my 1992 MSc dissertation at 
the London School of Economics (LSE), with very minor editorial amendments, and 
a new introduction explaining why its publication is timely in the wake of the current 
debate around the so-called ‘adoption problem’ in contemporary philosophy of logic.

Keywords: Quantum logic, Philosophy of logic, Anti-exceptionalism, Adoption 
problem, Hilary Putnam.

Resumen

El presente artículo es una reproducción fidedigna e inalterada de mi disertación, o 
tesis fin de máster, presentada en 1992 en la London School of Economics (LSE), con 
mínimas correcciones editoriales. Viene precedida de una nueva introducción que 
explica las razones que hacen relevante su publicación, derivadas del debate actual en 
torno al llamado ‘problema de la adopción’ en filosofía de la lógica contemporánea.
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Introduction to the 2025 publication

It did not occur to me that my old (1992) MSc. dissertation may be worth 
publishing until in 2024 I came across the collection of papers in Mind on the 
so-called adoption problem (Birman, Boghossian and Wright, Devitt and Rose 
Roberts, Kripke, 2024). Three of those papers, including Kripke’s, raise issues 
that are cognate to distinctions that I drew in 1992, particularly what I refer to as 
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the three-layered epistemological model. It struck me when I looked over these 
papers that the debate regarding whether logic is empirical (and if not, exactly 
why not) was about to take a new turn, and this time roughly along the lines that 
I had discussed in 1992. Still, that was not sufficient reason to publish a document 
with at best historical interest. Further conversations with Alejandro F. Cuesta 
in the fall of 2024 persuaded me that it may serve some purpose to make this 
document public. Alejandro was a stellar undergraduate student of mine in the 
accident-prone 2020 year. My mentoring was interrupted by the pandemic, but we 
reconnected in the summer of 2024, and quickly saw a path forward for his own 
PhD thesis on the philosophy of quantum logics. I am happy that we are working 
together again, and the publication of this document is above all a testament to 
Alejandro’s hard work, interest, and perseverance. (Thanks also to Victor Aranda 
and Elia Zardini for convening the meeting at Complutense at which this material 
was presented and discussed on February 12, 2025; the editors of Arif for their 
interest; and a journal referee for helpful suggestions.)

I have introduced only two sets of changes in the document, which otherwise 
is an exact rendition of the material that was presented for the award of the MSc 
in Philosophical Foundations of Physics at the LSE in September 1992. First, there is 
this new introductory preface for the 2025 publication, which very briefly lays 
out my reasons for thinking that the material is worth revisiting. And second, I 
have modified and shortened the original lengthy introduction, which was mainly 
ornamental and full of juvenile self-belief. I am not shamed by it though – I 
just feel some tender nostalgia for that youth that went away. I was twenty-three 
years old when I wrote this dissertation, and unbounded enthusiasm has some 
advantages in those early stages. But there is no point subjecting the reader to 
it now. Some of the statements in the original introduction are worth retaining, 
though, particularly as regards the conception of logic as distinct from physical 
theory –which seems vindicated in the ongoing current debate. There are also of 
course the grateful notes of thanks to those around me at the time, who certainly 
deserve to be remembered and acknowledged. So rather than excising the 
original introduction, I have reduced it to what is publishable within decorum. The 
juvenile references to Nietzsche and Franco had to go, but otherwise, the bulk of 
the document is entirely unchanged beyond merely editorial corrections. I have 
not introduced any modification even where I now think modifications are very 
clearly due. Much has been written since 1992 on Putnam’s successive arguments 
for quantum logic that it would be necessary to take account of now. Here I 
outline a few of the modifications that seem called for in response to some of 
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the literature in the last three decades. Ultimately, however, they do not alter the 
conclusions that I reached thirty-three years ago, which makes the publication 
of this document seem reasonably apt. The material is thus presented here as a 
historical source, and I am happy that Alejandro F. Cuesta is taking it further in 
his own PhD work, as outlined in his response, which follows it.

The main claim in the dissertation is that logic is not revisable in the way 
Putnam famously thought –and this is for some fundamental principled reasons 
that have to do with the tripartite distinction between logic, empirical physical 
theory, and the world. So, even an improved interpretation of quantum mechanics, 
or an ulterior development in physical theory beyond quantum mechanics, could 
not produce the revolution that Putnam envisaged. Quine’s anti-exceptionalism 
about logic (Quine 1951) is thus implicitly questioned, even though I was very 
careful in the dissertation – or ever since for that matter –, not to discuss Quine’s 
claims in any depth. (Incidentally, the term “anti-exceptionalism” –as the 
statement that logic too is subject to the tribunal of empirical evidence– seems to 
originate in Williamson 2007). I have always found Putnam full of rich argument 
– perhaps too much argument! – while Quine seemed to trade richly mainly 
in slogans. The thesis that logic is empirical is no exception. Quine may have 
established the slogan, but it was down to Putnam to put the detailed arguments 
forward over the years. If we are nowadays inclined to find against Quine’s anti-
exceptionalism, it is largely thanks to Putnam’s excruciating work, in successive 
attempts over three decades, at a detailed implementation of the slogan.

However, this is not to say that logic cannot be revised at all. But the 
revision will not come in the wake of empirical considerations from quantum 
mechanics, or any other empirical theory for that matter; it will answer to more 
general philosophical considerations instead. At the time of this dissertation 
those considerations struck me to specifically concern the status of bivalent 
metaphysical realism. At any rate, it follows that the revolution has if anything 
been minimized: A lot more than just the distributivity law must change if logic is 
to change! Nothing as surgical as the clean excision of the distributivity law, while 
leaving all the metalogic intact – which is essentially what Putnam aimed for – 
will do. Whatever formal change there is, it must invariably reflect the underlying 
nature of the propositions that we already use; so, it must have some reflection at 
the metalevel. So, a new logic cannot be simply ‘adopted’ in view of the paradoxes 
of quantum mechanics. At best quantum mechanics may reveal that we were 
mistaken about the status of classical logic all along – including the principle of 
bivalence and metaphysical realism along with it. Either the logical revolution 
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will take metaphysical realism away with it, or it will be no revolution at all! Today 
I may sound more measured, perhaps, and add a few cautions and caveats, but 
fundamentally I think that these lessons still stand.

By contrast, Putnam’s influential papers (Putnam 1968, 1975) proposed a 
daring analogy with geometry, which was the focus of the central part II of my 
MSc dissertation and still seems to me to be at the heart of his proposals. The 
analogy invited the thought that logic is genuinely empirical – i.e. a posteriori 
and revisable in response to empirical data – and proven to be so by quantum 
mechanics, just as geometry is empirical and revisable in response to general 
relativity. Even further, Putnam advanced the daring claim that classical logic 
ought to be replaced by quantum logic just so metaphysical realism can be retained. 
This was meant to be in analogy with how the advent of non-Euclidean geometry 
allowed Einstein to preserve Galileo’s relativity principle, and to retain classical 
mechanical measuring rods and clocks, in the face of recalcitrant electrodynamic 
phenomena. With my background in astrophysics and electromagnetism, I was 
bound to be captivated by Putnam’s analogy. I remain in awe at its ambition 
–even though it is nowadays widely rejected for very good reasons and indeed 
Putnam himself came to reject it too. The attempt to retain bivalent realism by 
switching the logic spectacularly fails; but the lesson, I suggested, may be not so 
much to preserve classical logic together with the uncomfortable paradoxes of 
quantum mechanics, but to give up on bivalent metaphysical realism instead. I 
still think there is something to this central claim, although obviously we have 
become so much more aware of the plethora of distinct alternatives available once 
Putnam’s analogy is thrown out. So, again, today I would introduce several severe 
caveats, yet stick to the central claim, which seems vindicated.

The background to my developing interest in Putnam’s analogy is wrapped 
up in my decision to move from physics to philosophy for my postgraduate work, 
so I hope I shall be forgiven for indulging a little memory trip here. (I happen to 
think that the intellectual content of our ideas is influenced by – and therefore 
can only be fully understood in reference to – our personal trajectories; but this is 
a claim for another paper). I came across Putnam’s daring analogy in the autumn 
of 1990, when I also came across him in person. Putnam was giving the Gifford 
lectures that year in St Andrews, where he was staying for a term, and a workshop 
had been put together in his honour. I travelled to this workshop in a memorable 
car journey, together with my Edinburgh tutors in philosophy (Larry Briskman) 
and physics (Hugh Montgomery). Putnam’s lectures were published as his Renewing 
Philosophy (Putnam 1992), while the papers presented at the workshop eventually 
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appeared a few years later in a volume edited by the conference organizers with 
the title Reading Putnam (Clark and Hale 1994). This was my first philosophy 
conference and catalysed my philosophical career. At this workshop I met Peter 
Clark, Hilary Putnam, Michael Redhead and Crispin Wright, all of whom would 
go on to have some significant role in my later professional development. I realize 
as I write this that I have a huge debt towards these four people, since there 
and then they determined my future life. (Crossing the Forth road bridge from 
Edinburgh to St Andrews while contemplating the rail bridge further down the 
Firth seems to also have had some impact – see the cover of my recent book 
[Suárez 2024]).

At the workshop, Michael Redhead read a paper criticizing Putnam’s 
proposal for quantum logic, and Putnam responded extensively (Redhead 1994; 
Putnam 1994), essentially conceding that the analogy with geometry did not hold. 
Quantum logic was not to quantum mechanics as non-Euclidean geometry was 
to general relativity after all. But the argument is involved, and Putnam did not 
concede for Redhead’s reasons, but for the different and more conclusive reasons 
canvassed in his published response (Putnam 1994: 269). The whole exchange 
fascinated me deeply and for a couple of years afterwards I was immersed in the 
debate regarding whether logic is empirical. More importantly for the course of 
my life, in his response to Redhead, Putnam made a point repeatedly to bring 
to bear a question raised elsewhere by Nancy Cartwright (this is also faithfully 
recorded in the published version – see Putnam 1994: 173-74). This was the first 
time I ever heard the name of this American philosopher, and I was very curious. 
My young and impressionable mind (together with some expert encouragement 
from Larry Briskman, who was an LSE doctorate) then led me to immediately 
apply to master’s courses at LSE and Cambridge. I got accepted to both and 
eventually made my way to the LSE to work under Nancy Cartwright, who had 
just arrived there, while keeping a very friendly attachment to Michael Redhead’s 
Cambridge group, where I often attended their regular weekly seminar. The rest 
is history, and my life was essentially determined at that momentous event in 
Putnam’s honour at St Andrews in 1990. Quantum logic, Putnam’s intriguing 
analogy, and his involved reasons for defending both, all were certainly in the fray 
throughout these deeply life-shaping decisions.

I go into these memorabilia not only out of nostalgia, but because Putnam’s 
response to Redhead’s talk at that event still strikes me as the most insightful 
thing he ever wrote on the value of his analogy and the status of quantum logic. 
Certainly, it is the most sober retrospective analysis of the fortunes of his claims 
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on behalf of quantum logic. His later paper on quantum mechanics (Putnam 
2005) is very insightful too, and signals a real change of heart with respect to 
a range of important issues in the interpretation of quantum mechanics, but it 
does not discuss quantum logic at all. On the contrary, the whole program of the 
revisability of logic gets dismissed in a brief parenthetical remark in the abstract: 
“The quantum logical interpretation proposed in Putnam [1968] is not considered 
in the present paper, however, because Putnam [1994b] concluded that it was 
unworkable.” Thus, the extended response to Michael Redhead that I watched in 
awe in St Andrews was Putnam’s last word on the topic – and a conclusive word 
as well.

Guido Bacciagaluppi (2009) has provided a useful framework against which 
to measure Putnam’s most considerate post-1990 position. Bacciagaluppi argues 
that Putnam sets out to defend three different claims of increasing strength on 
behalf of quantum logic. Roughly, the first one asserts merely the formal fact 
that the algebra of quantum operators possesses a non-classical logical structure. 
This is the inevitable outcome of interpreting the lattice operators in terms of 
logical connectives, as Birkhoff and Von Neumann (1936) famously did. It is a 
merely formal result that seems above reproach (although the interpretation of 
the lattice in terms of logical connectives always seemed to me a considerable 
assumption – which is undoubtedly the reason why I devoted so much effort in 
my dissertation to merely establishing this ‘formal fact’). Still, Bacciagaluppi is 
right to grant this assumption, since nothing major hangs on it. The analogy with 
geometry goes way beyond the merely formal statement that there is quantum 
‘logic’ in the lattice. When Bacciagaluppi mentions the analogy with geometry 
at this point, he no doubt has in mind only pure geometry. By contrast, Putnam 
clearly intended his analogy to apply to physical geometry, and to go beyond 
the statement of the formal differences between Euclidean and Non-Euclidean 
geometries. Therefore, the analogy does not strictly belong with this first formal 
uncontroversial assumption. At any rate, I deal with the first formal claim in 
the more technical part I of my dissertation, where I too happily go along with 
Birkhoff and Von Neumann’s thought that quantum mechanics imports a new 
logic through its lattice structure.

Secondly, there is the much more expansive additional claim that this ‘change 
of logic’ is not merely local, but thoroughly ‘global’ or even universal, so quantum 
logic can be seen to replace classical logic tout court, as the ‘true’ logic of thought. 
This is where the real meat of the argument lies, of course, and upon which the 
recent debate regarding the ‘adoption problem’ has focused. My sense is that 
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this is also where Putnam’s analogy with geometry most deeply belongs. For 
the claim advanced on behalf of geometry, recall, is not simply that it heralds a 
change in formal framework, but that it allows us to reconceptualize the whole of 
physics, including electromagnetic phenomena, with great conceptual ease, and 
in agreement with the posit of metaphysical realism that characterizes classical 
physics. The passage to the new geometry introduced a new paradigm, in Kuhn’s 
celebrated phase, as regards our understanding of the physical geometry of the world. 
(So, this is no longer the first claim about pure geometry). The passage to quantum 
logic is supposed to similarly herald a new paradigm in our understanding of the 
logic of thought. Whether these paradigm shifts are in fact comparable – whether 
quantum logic can be said to introduce a new paradigm – is precisely what is at 
issue. My sense is that Putnam came to implicitly withdraw the analogy altogether 
in the response to Redhead in 1994, at the point where he writes: “A realist 
who rejected the admissibility criterion would have to maintain that although 
every quantum-mechanical proposition does have a determinate truth-value, it 
is impossible for us to even guess what those truth-values might be. But this 
would be to admit that we cannot describe what goes on in a ‘quantum-logical 
world’ in the way in which we can describe what goes on in a non-Euclidean 
world” (Putnam 1994: 279). The admissibility criterion simply stipulates that all 
elementary propositions are mapped onto the Boolean algebra of bivalent truth 
values (0 or 1). So, Putnam is implicitly saying that a realist who gave up the 
criterion would be left with no resources in the meta-language to assert that the 
replacement of classical by quantum logic is effectively apt for the description 
of reality (including quantum phenomena). This is strongly reminiscent of the 
standard formulations of the adoption problem (about which more below), and cuts 
to the heart of the claims in part II of the dissertation.

Finally, the third claim that Putnam made on behalf of quantum logic is 
that the introduction of the new logic ipso facto resolves “the standard paradoxes 
of quantum mechanics, such as the measurement problem or Schrödinger’s cat” 
(Bacciagaluppi 2009: 2). This one was always the most controversial claim of 
the lot and has been rightly dismissed by most philosophers of physics. (For 
informed reviews, see Maudlin 2005, 2022). Putnam clearly and explicitly came 
to reject it in 1994 but seems to have been doubtful ever since that response to 
Nancy Cartwright over a decade earlier (Putnam 1981b). It is intriguing to see 
that this claim did not seem to bother me that much in 1992, and only marginally 
appears in the dissertation. I certainly was aware that quantum logic could at 
best block the derivation of the wrong results in, say, the classical description 
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of the two-slit experiment but could not reproduce the quantum predictions. 
The issue was central to Redhead’s talk at the St Andrews workshop (Redhead 
1994) and comes up in publications of mine a few years later (Suárez 1996). It is 
unclear to me though whether I was already then in addition aware of the need 
to introduce explicit axioms for quantum probability functions defined over the 
Boolean algebras to obtain the actual quantum predictions for any interference 
phenomena. Certainly, I recall spending a large part of the following academic 
year (1992-93) reading up on quantum probability, particularly the works of Luigi 
Accardi and Itamar Pitowsky, before I made the decision in late 1993 to give up 
on the initial plan to write a PhD thesis on quantum logic. There were more 
interesting things going on at the LSE at that time (it was the momentous time of 
the emergence of the mediating models’ movement), and I chose to get involved 
in the LSE project on models in physics and economics instead.

Still, I retained an interest in Lüders’ rule throughout; my PhD thesis dealt 
with the semantics of quantum theory (Suárez 1997), and I went on to supervise a 
PhD thesis on the topic some years down the road (Guerra 2009). If it was not at 
the time of writing this MSc dissertation it must have been very soon afterwards 
that I read through the seminal paper by Friedman and Putnam (1978). This 
paper does not appear in the bibliography, but it does turn up in my files from 
that time with a single annotation on it: “Lüders’ rule”. Friedman and Putnam 
reconstruct quantum conditional probability out of Lüders’ rule (the standard 
extension of conditional probability to quantum incompatible observables) and 
argue that quantum logic can make best sense of it. However, they do not there 
fully address the problem that quantum logic can do nothing other than simply 
blocking the undesirable classical statistics. This is a critical point that deserves 
explaining in some detail.

The difficulty is easy enough to reconstruct in a way sufficiently elementary 
to teach it in introductory classes on the topic. In the two-slit experiment, where 
particles go through a first screen with two slits in it, and are later detected at a 
further detection screen, denote by A, B, and X the following events:

A:	the particle goes through the lower slit.
B:	 the particle goes through the upper slit.
X:	the particle is detected in the X region of the detecting screen.

Then according to the fourth Kolmogorov axiom of classical probability, which 
defines conditional probability:

1.	 P (X / A) = P (X ∧ A) / P (A) and P (X / B) = P (X ∧ B) / P (B). 
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It also follows from the same axiom that, for the disjunction of A and B:

2.	 P (X / A ∨ B) = P (X ∧ (A ∨ B)) / P (A ∨ B).

Now, in agreement with the distributivity law in classical logic:

3.	 P (X / A ∨ B) = P ((X ∧ A) ∨ (X ∧ B)) / P (A ∨ B).

Let us now suppose that the conjoint events (X ∧ A) and (X ∧ B) are mutually 
exclusive and jointly exhaustive, as seems obvious given the set up. Then their 
probabilities must obey additivity, and we may apply the third Kolmogorov axiom of 
classical probability to find out that:

4.	 P (X / A ∨ B) = (P (X ∧ A) + P (X ∧ B)) / P (A ∨ B).

Now suppose in addition that the single events A and B are also mutually 
exclusive and jointly exhaustive, and that moreover the source of particles emits 
them in any given direction at random with the same probability, and that the 
source is equidistant from both slits, then it follows that:

5.	 P (A ∨ B) = P (A) + P (B) = 2P (A) = 2P (B).

Hence it follows from 4) that:

6.	 P (X / A ∨ B) = P (X ∧ A) / 2P (A) + P (X ∧ B) / 2P (B).

And this expression can now be rewritten as follows:

7.	 P (X / A ∨ B) = 1–
2 P (X / A) + 1–

2 P (X / B). 

This last expression (7) is equivalent to the classical mechanical expression 
for the statistics of classical particles going through one or another slit and then 
landing on a given region of the detecting screen: Nab = ½ Na + ½ Nb. However, 
the classical statistics are precisely refuted by the experimental evidence, and are 
of course violated in quantum mechanics, which instead predicts the notorious 
interference fringes that fail to obey simple additivity. Thus, the above derivation 
is a reductio ad absurdum, and the question becomes which premise, or set of 
premises, must go. Quantum logicians would blame the step that takes from (2) 
to (3) since it involves the distributivity law that we know to be false in quantum 
logic. Putnam follows suit: He claims that the distributivity law is generally 
false in quantum logic, so its application in the step that takes from (2) to (3) is 
illegitimate. By contrast, quantum probabilists like Luigi Accardi (1990, 1999) 
put the blame on the fourth Kolmogorov axiom. This is also known as the ratio 
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definition of conditional probability and is independently known to be problematic 
(Hajek 2003). The derivation of the classical statistics is blocked at a different step 
in the proof, namely the step that takes us from (1) to (2). This allows quantum 
probabilists to leave the whole underlying Boolean algebra intact, and thus to 
preserve classical logic, while nonetheless blocking the undesirable derivation of 
the classical statistics.

Strictly speaking, quantum probability blocks the derivation at every step, 
since every step involves conditional probabilities. However, in the case of 
commuting observables, Lüders’ rule boils down to the ratio definition (as, more 
generally, quantum mechanics boils down to classical mechanics in the regime 
of commuting observables). So, some of the steps are more secure than others. 
For instance, the very first step that allows us to write down (1) is secure, since 
X commutes separately with each of A and B. By contrast, the step that takes us 
from (1) to (2) is problematic since A and B do not commute. But the advantage 
of quantum probability over quantum logic is that the former gives a recipe for 
the calculation of the correct experimental statistics, which the latter does not. 
Putnam can block the derivation of the classical statistics by denying distributivity, 
but he cannot provide the right probabilities for the two-slit experiment. This 
simple reason seemed enough to prefer quantum probability over quantum logic. 
For a long time after I submitted my MSc dissertation, I regarded a revision in the 
probability calculus as the best way to go, and a much superior response to the 
paradoxes of quantum mechanics.

Putnam was of course aware of Lüders’ rule. In the joint paper with Michael 
Friedman, they emphasized the difference between quantum probability and 
classical probability precisely when it comes to its description of transition probabilities 
between eigenstates of non-commuting operators. Lüders’ rule is in fact the 
expression that opens this paper: Prob� (F / E) = Prob�E

 (F ) = 〈�E | F�E〉, where 
jE is the normalized projection of j onto the projection operator E, and “this 
non-standard conditional probability reduces to the standard one when E and F 
are compatible” (Friedman and Putnam, 1978: 306). However, the interpretation 
that Putnam gives to this “transition” probability is certainly not standard. He 
understands it as a conditionalization of epistemic knowledge. In other words, he 
gives it a subjective interpretation. Thus, Friedman and Putnam write: “All we can 
do is adjust our probability function to the new information, i.e. we change from 
Prob� (F ) to Prob�E

 (F )” (Id. 313). And in revisiting this paper in the response to 
Redhead in 1994, Putnam is extraordinarily clear and honest: “Referring to Prob� 
(F / E) as a ‘transition probability’, as I just did, and as Redhead does, may give 
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the impression that it is to be thought of as the probability of a physical change, 
but Friedman and I thought of it rather as an epistemic probability; the probability 
that one would assign to F if one starts with the knowledge that the state is j and 
one obtains (whether through physical measurement, clairvoyance, a lucky guess, 
or whatever) the additional information that E.” (Putnam 1994: 276).

Indeed, Friedman and Putnam heroically attempt to extract Lüders’ rule 
from the underlying lattice structure of quantum mechanics, to thus be able to 
claim that it is the logic that does all the work in resolving the paradoxes. Yet, quantum 
probabilists do nothing of the sort. They do not derive Lüders’ rule from the 
underlying lattice structure but rather postulate it as an alternative axiom in a 
non-classical (or at any rate a non-Kolmogorovian) calculus of probability. 
These new quantum probability functions then do all the work, and their putative 
representation of genuine transition probabilities (i.e. objective probabilities for 
genuinely physical state transitions) is at the heart of how they do this work. 
The underlying lattice in fact can be Boolean and classical, if the probability 
functions are defined through the new quantum axioms carefully (see Accardi 
1990: 122ff.). It is this sort of assumption regarding the nature of probability in 
quantum mechanics that comes under empirical pressure, not any assumption 
regarding the underlying logic or our reasoning. Formal probability must, after 
all, serve as a general template for models of empirical data (Humphreys 2019; 
Suárez 2020). And if probability theory is understood as a general theoretical 
framework, then it certainly can come under such pressure. Nothing follows for 
the underlying logic, never mind the rules of inference that make up our ordinary 
practices of reasoning.

All of this became very clear to me during the 1992-93 year and determined 
my decision to abandon the project of writing a PhD thesis on quantum logic. 
Putnam seems to have been misled by a radical form of philosophical empiricism 
which, combined with the heroic attempt to retain metaphysical (bivalent) realism, 
prevents him from seeing how quantum probability can emancipate itself from 
the underlying logic. True, quantum mechanics imports fundamental conceptual 
change, but this change does not concern our logical reasoning, or our inferential 
practices. It is not a change in logic, but it impacts our concept of probability 
instead (Stairs 1982; see also Guerra 2009 for a detailed study of the underlying 
philosophical issues regarding this deep conceptual change in probability). And 
nothing prevents us from using our old classical logic to reason our way into 
a different set of contingently true axioms for physical probability. Probability 
certainly can be an empirical theory, even if logic is not.
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This is all strikingly in agreement with the recent literature on the adoption 
problem (see the papers in Mind, 2024 in the references below) and may be thought 
to just recapture Kripke’s anti-anti-exceptionalist claims in the terms of the 
philosophy of physics. Hence, there are no real news for the informed reader 
here. However, it is worth remembering that this consensus had not arrived yet in 
the early 1990s, and the technical advances in quantum logic were then a miracle 
to behold. I also did not have the benefit of Kripke’s argument which may have 
had some legendary status, but was not published, so it was hard to know what to 
make of it. I don’t recall Kripke being discussed at all in that exchange on quantum 
logic in St Andrews in 1990. The name does not appear in the proceedings (Clark 
and Hale, 1994) except in Blackburn’s entry in relation to the private language 
argument. Nor do I recall spending any time thinking about Kripke’s work in the 
years between 1990 and 1994, other than perhaps for a brief conversation with 
David Bloor about Kripke’s version of the private language argument (Kripke 
1982), which Bloor was very keen on – and probably working on at the time: 
Bloor’s book on the private language argument (Bloor 2007) came out soon after. 
The first rendition of Kripke’s argument against Putnam that I ever read was 
Stairs’ (Stairs 2006) and by then I was rightly or wrongly quite disinterested in the 
quantum logic program, for the reasons I explained above.

Nevertheless, the claim that logic is separate from the empirical world, and 
our physical theories mediate whatever relation it may hold to the world (i.e. the 
three-layered epistemological model defended in my dissertation) has the air of 
an adoption problem. But my concern was not so much with a circularity in the 
sort of reasoning that can conceivably lead us to abandon classical logic. I take 
this circularity to be very much at the heart of the concerns expressed by both 
Kripke, on the one hand, and Boghossian and Wright, in a different format, 
on the other. It certainly is the focus of Lewis Carroll’s oft-mentioned paper in 
this context (Carroll 1895). By contrast, my concern at the time was rather more 
aligned with Van Fraassen’s (1975) point that the ‘elementary propositions’ of 
quantum mechanics can only be defined in the metalogic in accordance with 
some predetermined semantical rules. Birkhoff and Von Neumann expressly 
chose a bivalent semantics to define ‘elementary propositions’ and to keep the 
logical language closed under the usual connectives. But different choices could 
have been made and can still be made. It is evident that any reasoning that may 
possibly persuade us to adopt one set of rules over another will have to be carried 
out in our ordinary logic, i.e. the logic that we use in ordinary inference and 
reasoning, whatever that logic may be. The fact that I was overly impressed by 
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Dummett’s specific arguments for intuitionistic logic (Dummett 1976) now 
seems to me incidental to this fundamental point.

Logic is not empirical in the sense that Putnam envisaged it to be, for it 
can only be dictated by the abstract structure of our empirical theories under 
some semantic interpretation of the elementary propositions of the theory. 
And our interpretations as well as our theories are in turn inevitably vastly 
underdetermined by the actual world. Nor is there a way to argue for the 
wholesale adoption of quantum logic from the practical resolution of the quantum 
paradoxes. This requires a quantum probability calculus that can perfectly well 
remain independent of the underlying logic in the lattice of propositions. The 
analogy with geometry thus breaks down, since physical geometry belongs in the 
second layer of the epistemological model, as a constitutive part of our physical 
theories. Our reasoning patterns and rules of inference are therefore not at stake 
in a change in the geometrical description of spacetime.

General relativity came to be accepted without anyone being forced to change 
the way they reasoned – in fact it came to be accepted through reasoning from 
evidence carried out in accordance with our ordinary rules of inference. Yet 
our rules of inference are precisely what is at stake in any putative change in the 
underlying logic of ‘our thought’ – whether this locally concerns our reasoning 
about quantum mechanical ‘elementary propositions’ only, or globally all our 
inferential practices at large. The three-layered epistemological model makes it 
clear that logic goes way beyond what any physical theory can possibly determine, 
anyway. It informs our judgements regarding fictional and hypothetical possibilities 
beyond what is strictly physically possible in any legitimate sense of the word. (A 
point elegantly carried home also by Boghossian and Wright 2024: 105).

Nowadays, I like to impress the fact that the rules of reasoning making 
up our inferential practices, however loose or hard to determine, inform our 
scientific theories and models, including quantum theoretical models. A scientific 
theory is essentially nothing but a sophisticated and complex tool for inference 
(Suárez 2024). Now revisiting my old work on quantum logic, I am forced to 
wonder how much of this may have remote ancestry in Putnam’s original views 
on quantum logic. The part of Putnam’s program that still seems unquestionable 
is the fact that there is a distinct logic, and a distinct probability calculus, ‘within’ 
the quantum mechanical formalism. But if this ‘logic’ is to genuinely inform our 
reasoning in the domain of quantum phenomena, it ought to be in addition to, never 
in place of, our usual inferential practices. That is, I assume that whatever quantum 
logic or probability may be put to effective use (in our inferences regarding the 
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phenomena that it describes) it must include our usual logical reasoning practices, 
which always stand in the background, yet are not readily formalizable (Kripke 
2024; Padro 2024). There are additional rules of inference (that is, additional 
to standard classical logic) that are imported by every model, which govern our 
reasoning to the properties of the target in the model’s domain of application 
(this is known as surrogative inference). These rules of inference must be taken 
in a sufficiently loose sense, and are based upon exploratory analogies, but are 
nonetheless normative of their own right (Suárez 2024: Ch. 7 and 8, particularly 
217-220). So, there is one sense in which Putnam was right after all: An empirically 
confirmed scientific theory can certainly inform our inferential practices, even if 
– contrary to what Putnam thought – it does not thereby impact our most general 
or basic rules of inference, i.e. logic.

The practices of inference that we call ‘logic’ stand at the most general end 
of the spectrum of our inferential practices and are precisely those that cut across 
any possible scientific theoretical representation of the world. So, they cannot be 
impugned by the empirical evidence that favours any given model or theory. This 
point has some implications for the arguments against the distinction between 
‘accepting a theory’ and ‘adopting a logic’ (Williamson 2023), since it shows that 
the distinction essentially boils down to an issue of generality or universality 
of the rules of inference under discussion. In my view one must accept quantum 
theory in Van Fraassen’s sense of the term, as the empirically adequate theory of 
its domain (Van Fraassen 1980). But one need not thereby adopt quantum ‘logic’ 
other than in the trivial sense of accepting the fact that the lattice structure of 
the theory imports a sized-down or truncated version of the axioms of logic or 
an expanded version of the axioms of probability. Logic cannot be empirically 
revised as Putnam thought, but the rules of surrogative inference that are valid 
in any given application of a scientific representation of course are so revisable 
and are often revised. At this point – and only, it seems to me, at this point – the 
analogy with geometry has bite. ( Just think about how you would calculate the 
shortest path in Euclidean and non-Euclidean geometries. That is where the rules 
of inference made available by each theory can make a practical difference.)

Putnam started off, as any Reichenbach student would, with the proposal 
of a three-valued logic specifically for quantum mechanics (Putnam 1957). He 
diverted at Harvard under the spell of Quine’s conventionalism to defend a much 
more radically empiricist proposal for logic in general (Maudlin 2022). In wanting 
to fit in with Quine’s rejection of the distinction between analytical and synthetic 
knowledge (a distinction dear to the European logical empiricists), Putnam was 



Análisis. Revista de investigación filosófica, vol. 12, n.º 1 (2025): 47-92

The Logic of Quantum Theory Revisited 61

driven to the radical view that quantum mechanics requires a change in the 
logical framework at the core of Quine’s web of belief. By the time I got to know 
him better (Putnam was the sponsor of two of my periods as visiting scholar 
at Harvard –in 2009 and again in 2011), he had left both quantum logic and 
metaphysical realism behind. One wonders how much more viable and balanced 
his views would have stayed throughout had he stuck to the Neo-Kantian roots 
of his beloved teacher and mentor. There may be a lesson here for us all.

Cambridge, Massachusetts, June 2025

Mauricio Suárez
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Complutense University of Madrid
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The Logic of Quantum Theory: A Minimized Revolution

A selective review of the philosophical implications  
of quantum logic

MSc. Dissertation in the Philosophical Foundations of Physics, 
London School of Economics, September 1992.

Original 1992 Introduction  
(downsized for the 2025 publication)

My interest in quantum logic started while I was studying physics at Edinburgh 
University. Marc Denervaux knew that I was helping to produce a version of an 
EPR experiment, and he once brought me a pile of papers on quantum logic. I 
just looked through them and decided that they would not be very useful for the 
experiment, so I returned them. But my curiosity had been aroused. What struck 
me first was –there must be something wrong with the idea of a quantum logic. 
At the time, quantum mechanics seemed as the paradigm of extreme empiricism; 
I did not even think of it as a theory, –and, in fact, I still believe few physicists 
think of quantum mechanics as a theory at all–. Quantum mechanics was just 
a set of recipes to find one’s way in the laboratory. Even when I specialized in 
Astrophysics, quantum mechanics was only ‘that set of useful tricks that allowed 
one to find the expected spectral lines in the correct places in the photographic 
plate’. General Relativity had a totally different taste: it was an abstract, high-
level theory, a product of the deductive genius. But quantum mechanics… –well, 
quantum mechanics was only a (powerful) tool.

I only began to hint at the importance of alternative logics through reading 
Wittgenstein (1922); the Tractatus surely constitutes an attempt to study logic 
from a global perspective. It is remarkable that the last two sets of propositions of 
the Tractatus (6 and 7, most particularly 6.1. on tautologies, 6.3. on probability, 6.4. 
on hierarchies in logic and 6.5. on whatever lies outside logic –what Wittgenstein 
calls mysticism.) have been the subject of so little attention from logical positivists 
given that they effectively define the limits of logic. The point lies, however, in the 
general “flavour” of the discussions. The picture that comes out from the book is 
a tantalizing one: –logic is, in fact, unavoidable. Logical inference mediates every 
thought, whether conventional or not, and it is the basis for a strong theory of 
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meaning: The meaningfulness of a discourse is defined according to the validity 
of its logical structure.

A deep insight into the implications of quantum logic for the question of 
the status of logic, is contained in Michael Dummett’s splendid paper, “Is Logic 
Empirical?”, first published in 1976 as a response to Hilary Putnam’s (1968) claim 
that quantum logic proves logic to be empirical. This paper is a thrilling and 
wonderful piece of understated skeptical criticism, and it seems to put forward a 
position more akin to the Tractatus than to the later Wittgenstein ideas. I think 
it is fair to say that Dummett’s paper has played a central role in the shaping of 
my dissertation. It has helped me to understand the priorities in my research and 
what issues, among the huge literature in quantum logic and the philosophy of 
logic, I ought to emphasize.

When I first conceived the idea of writing on quantum logic, I took it for 
granted that the result would be a highly technical piece of work. Problems in the 
foundations of quantum mechanics are intrinsically related to lattice theories and 
algebras, and, of course, to the formalism of dual evolution by Von Neumann1. 
Lattice theory is the natural foundation for work in quantum logic and algebras 
constitute the starting point of the so-called algebraic approach to quantum 
mechanics. The fundamental discovery of Birkhoff and Von Neumann, that 
quantum mechanics can be written in terms of propositions, and these can be 
related to the underlying mathematical structures, as expressed in their 1936 
paper, “The Logic of Quantum Mechanics”, is the basic historical landmark. This paper 
is, still to the present day, one of the most fascinating and clarifying texts on the 
subject. I therefore dedicate a full section to its exposition, even if acknowledging 
lack of understanding of a few of its parts.

Of course, reading Dummett’s paper put me off the idea of writing a 
straightforward technical dissertation. For a time, I had considered researching the 
Kochen-Specker paradox or studying the probability theory in quantum mechanics 

1  This formalism, as presented by J. von Neumann in his (1932) Mathematical Foundations 
on Quantum Mechanics–, provides quantum mechanics with the necessary requirements to 
fulfil the conditions to be properly addressed as a theory. Such requirements are of course 
of a logical nature: they must specify the conditions under which the central equations of 
the theory apply. Von Neumann, in the above-mentioned work defined the circumstances 
(measurement) under which the fundamental equations (the Schrödinger equation) fail to 
apply. Needless to say, I realized how much theory there is to quantum mechanics when I 
learnt the Von Neumann formalism.
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(probability can be defined as a measure on the lattice, so the connection with the 
logic can be immediately established). But the realization that the foundational 
problems of quantum logic were of a massively semantical nature (and therefore 
more likely to be comprehended and adequately tackled by purely philosophical 
tools, such as a theory of meaning) led me to a sort of compromise.

The compromise consists in keeping a strong technical exposition of the logical 
structure of quantum mechanics, but restricting the emphasis of the discussion 
to questions related to the implications of quantum logic for the philosophy of 
logic. The dissertation is thus structured in two parts; the first introduces the 
fundamental notions of quantum mechanics (section 3) and describes how these 
can be related to an underlying logic of propositions (section 4). Section 1 contains 
an outline of some personal thoughts about the role of logic in epistemology, and 
about the place that quantum logic holds in the context of the philosophy of 
physics. Lattice theory plays a fundamental part in the construction of quantum 
logic –it may be regarded as providing the semantics for the quantum-logical 
language–. Therefore, I have not thought it convenient to give lattice theory a 
marginal treatment by confining it to an appendix, –as is usually the case in most 
standard expositions. It is thus introduced extensively, as a system on its own, and 
as quickly as possible, in section 2. A word of warning is due here with respect 
to notation: the symbol ∈ is used all throughout the dissertation for set-inclusion 
(A ∈ B means that A is in B).

The transition to the more philosophically oriented second part of the 
dissertation is smoothly carried out by a discussion of Van Fraassen’s (1975) 
excellent paper, “The Labyrinth of Quantum Logics” (again in section 4), where the 
distinction between the syntactic and the semantical aspects of quantum logic is 
clearly stated, and the significant stress is already anticipated to lie on the latter. 
Part II of the dissertation contains the properly philosophical discussions. First, 
the empirical view of logic is put forward, following Putnam’s many contributions 
to the subject (section 5). It is then shown that this view runs into problems when 
considering arguments from the theory of meaning, according to the general 
discussion by Dummett, and to the more specific result in Bell & Hallett’s 1982 
paper, “Logic, Quantum Logic and Empiricism” (section 6). Finally, in section 7, in 
the spirit of reaching some conclusion, I give a very brief historical digression and 
suggest a somewhat unusual interpretation of the aims of quantum logic.

The last year at LSE has been a happy period in my life. I have learnt methods 
to approach theoretical research in philosophy, especially research concerned with 
logic and probability. Moreover, I have learnt that the fundamental questions, –in 
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science in general, and in physics in particular-, are always of a philosophical nature, 
and I have abandoned my quite naive operationalist views –which in no way implies 
that I have become a realist. I shared many discussions with Phillip Hübner, who 
would probably disagree with many ideas in this dissertation. I certainly learnt a 
lot of Austrian mathematical physics from him. Giovanna Corsi, of the University 
of Florence, introduced me to lattice theory. My tutor at LSE, Elie Zahar, had an 
enthusiasm for consistency that proved to be contagious. My supervisor, Nancy 
Cartwright, saw me through the conceptual jungle of the formalism of quantum 
mechanics. Of course, none of them are responsible for possible errors.

London, September 1992

Part I: Quantum Logic Revisited

1.	 Logic in Physical Theory

The following questions might seem a natural preamble to the discussion of 
quantum logic: What is the role of logic in the theories of physics? How does logic 
relate to the experimental practice of physics? What could be the epistemological 
importance of quantum logic? This section aims at a very brief elucidation of 
some of these questions. The intention is to present a natural philosophical 
introduction to quantum logic, although it must be stressed that the questions 
dealt with in this section are, on their own, part of important contributions and 
debates in modern philosophy of science. The approach taken here is highly 
personal and, admittedly, biased towards quantum logic.

Logic states the laws of thought. Whether these laws can be interpreted 
from the point of view of a realistic correspondence theory of truth or not is –
partly– the subject of the discussion of part II of this dissertation, and we should 
not be concerned with that question at this stage. Human beings use logic to 
make inferences and to construct theories about the world. However, a theory is 
independent of the logical processes that have been followed in order to produce 
it2. Theories are elaborated in a social context, so they tend to accommodate 
certain social (external) constraints and, also, to account for some empirical 
results. These external constraints do not need to be of identical logical nature as 
the laws of thought. If they were of identical logical nature, then, by implication, 

2  See for example Popper (1975: 106-152).
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the social world would be regulated by actions that preserve logical validity and 
truth; this is not an assumption that can be safely guaranteed. Similarly, neither 
are the empirical constraints required to share the same logical nature as the laws 
of thought. If they were so required, then it would have to be accepted that the 
world is logical in itself: –another clearly unjustified assumption.

Occasionally, theories are created with a view to accommodate some well-
known experimental conditions. Thus, such theories already contain, in their 
original axiomatic structure, some schemata that fulfils certain empirical 
constraints. If the view is taken that the laws of thought are not subject to those 
external or experimental constraints (or at least not immediately), then the following 
possibility arises that, in certain cases, the logic of thought might be inconsistent 
with the logical structure of some theory. This is exactly what has occurred 
with the quantum theory. The logical basis of the theory (quantum logic) is not 
consistent with the logic of thought (Aristotelian logic).

There is an epistemological framework that accommodates the above 
interpretation of the philosophical importance of quantum logic. It resembles 
Popper’s three worlds ontology3, but contains significant differences. I prefer to 
call it the 3-layers epistemological model, because it does not make, –as opposed to 
Popper’s scheme–, any ontological claims: the layers in this model do not have to be 
interpreted in such strong terms as worlds. The model is thus a purely epistemological 
one, and I accept it can be biased: I use it to explicate how quantum logic arises.

The first layer contains thinking. This is defined as the production of concepts 
and the establishment of correct inferences between premises and conclusions 
in accordance with the laws of (Aristotelian) logic. Thus, every thought has a 
structure, even prior to its being put into words4. The structure is always of a 
logical nature, –that logic being, of course, the classical (Aristotelian) logic.

3  See footnote no. 2.
4  N.B. the fundamental distinction between the earlier and later Wittgenstein. The later 
Wittgenstein has often been interpreted as claiming that the structure that provides meaning 
belongs to the realm of language, not of thought –there is no logical structure, only grammatical 
rules. Thinking is thus independent of logic; it is by “wording” the thought, –the positioning 
into a grammatical structure–, that we convey meaning. Bartley, for example, interprets the 
later Wittgenstein as having meant that “Even the basic laws of logic […] were now to be 
regarded as conventions, as highly systematic schemes for ordering statements which were […] 
in no way more basic than language-games.” (Bartley 1973: 160). If Bartley’s interpretation 
is correct, then the claim that the Philosophical Investigations is a natural continuation of the 
Tractatus would not seem to hold water. In this section I am obviously following the Tractatus. 
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The second layer contains theories. In the 3-layer epistemic model a theory 
always has a logical structure, although this structure need not agree with classical 
logic. The assertion that a theory always has a logical structure follows from 
Ramsey’s (1929) paper “Theories”. This assertion is at the core of contemporary 
work in the structuralist school in the philosophy of science5. The logical structure 
of a theory can be easily derived from the mathematical axioms upon which it is 
founded. Different sets of axioms can still represent the same logical structure, so 
the logical structure of the theory is uncovered only when a morpholog y, –not just 
an axiomatization of the theory–, is defined. The morphology can be explicated in 
terms of set-theory and the assumption that set-theory implies a logical calculus 
through relations of set-inclusion, enables one to perceive the morphology as the 
representation of the logical structure of the theory.

The third layer is the factual empirical collection of data. The definition of 
the contents of this layer is certainly a matter of discussion: some authors would 
claim that in fact, there is no such factual empirical collection of data. According 
to this view, all data is theory-laden6. However, an alternative view is contained 
in Ramsey’s (1929) paper and has consequently been maintained by many logical 
positivists; this view holds that at a very low level in the empirical scale, there are 
so-called observables. I have supported this view elsewhere while stressing that what 
scientists normally call observables are not observables at all in the Ramseyan sense.7

Nevertheless, this discussion does not affect the explication of quantum logic, 
in the sense that quantum logic emerges from a relation between the first two layers 
and is in no way influenced by the third layer. This is, in fact the main achievement 
of the 3-layer epistemological model. It distinguishes strongly between the questions 
dealt with by the logical structuralists and quantum logicians, and those questions 
addressed by empiricist philosophers of science. The former discuss issues such 
as the logical consistency of thought and theory. The latter discuss issues such as 
realism and empirical adequacy between theory and facts. This is relevant to my 

5  See, for example the book by Balzer, Moulines and Sneed (1987). I learnt about logical 
structuralism from (Moulines 1992). 
6  Of course, Popper, Kuhn, etc. 
7  In my seminars in the philosophy of cosmology at LSE, I made the distinction between 
Primary Observables, –observables in the sense of Ramsey– (such as measurements of 
frequencies, angles, intensity of light, polarization, etc.), and Secondary Observables (such 
as the Hubble cosmological constant and the density of the universe parameter). Scientists 
normally also call the latter “observables”, but they are derived from the Primary Observables 
by very low-level theoretical manipulations such as Doppler shifts and equivalent widths. 
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dissertation in the sense that it shows that there exist two definitions of realism. 
One can define realism by establishing the empirical predictive power of a theory 
–i.e. by observing the relationship between the second and the third layers of the 
epistemological model. But one can also define realism by characterizing a logical 
correspondence between statements that result from the theory and the principle of 
bivalence (i.e. by assuming statements are necessarily either true or false), –this only 
concerns the model’s first and second layer. This distinction between the meanings 
of realism is often not sufficiently emphasized. However, it is a crucial distinction 
for the purposes of this dissertation. I will return to it in Part II, when I will discuss 
the philosophical implications of quantum logic for logic and realism. The rest of 
Part I is dedicated to a technical exposition of quantum logic.

A final remark concerns the relationship between logic and the world. 
It is important to stress that in the 3-layer epistemological model there is no 
direct relationship to be established between layers 1 and 3: The empirical data 
(presumably extracted from the world) is in no way dependent upon the laws of 
thought. But the opposite holds as well: the laws of thought are independent of 
the empirical data, that is, logic is independent of the world.

2.	 Lattice Theory for Quantum Mechanics

Lattice theory is the cornerstone of quantum logic. A propositional logic can 
always be read off a lattice. This is the case because a lattice defines set-theoretic 
inclusion relationships in a partially ordered set and a logic can always be derived 
from set-theoretical inclusion relationships. It so happens that the formalism 
of quantum mechanics can be expressed in algebraic terms, so a lattice can be 
given for quantum mechanics. This closes the circle: the formalism of quantum 
mechanics can be reduced to a lattice which, in turn, implies a logic. The lattice is 
therefore the fundamental structure: it gives rise to quantum logic:

In this section I will present the fundamentals of lattice theory, by way of 
stating well-accepted definitions8. In the following two sections I will describe 
the formalism of quantum mechanics and quantum logic.

8  A good summary of lattice theory is in Jammer (1974: 523-527). Michael Redhead’s (1987: 
176) has a very brief but clear appendix on lattice theory. 

Quantum Mechanical Formalism.
Lattice

Quantum Logic.



Análisis. Revista de investigación filosófica, vol. 12, n.º 1 (2025): 47-92

The Logic of Quantum Theory Revisited 71

Definition 1: Partial Ordered Set (Poset).

A poset is a set A on which a relation ≤ has been defined, such that ≤ is 
reflexive, transitive and antisymmetric.

1.	 Reflexive: If a ∈ A, then a ≤ a.
2.	 Transitive: If a, b, c ∈ A then: if a ≤ b and b ≤ c then a ≤ c
3.	 Antisymmetric: If a, b ∈ A then: if a ≤ b and b ≤ a then a = b

Definition 2: Meet and Join.

A meet is also called the “greatest lower bound”. The meet x of two elements 
of A, say a and b, is defined as follows:

x = meet (a, b) iff  x ≤ a & x ≤ b  & ∀c∈A (c ≤ a & c ≤ b → c ≤ x)

A join is also called “the lowest greater bound”. The join y of two elements 
of A, say a and b, is defined as follows:

y = join (a, b) iff  x ≥ a & x ≥ b  & ∀c∈A (c ≥ a & c ≥ b → c ≥ y)

The following notation is conventional:

x = meet (a, b) = a & b
y = join (a, b) = a v b

This notation already incorporates the fact that a logic can be abstracted 
from a lattice. The meaning of the connectives & and v is thus defined from set-
theoretic inclusion relationships.

Definition 3: Lattice.

A lattice Ӕ is a poset such that all meets and joins belong to the poset. It is 
defined as follows:

Ӕ = <A, ≤ > is a lattice iff:

1.	 <A, ≤ > is a poset.
2.	 ∀a, b ∈ A (x ∈ A & y ∈ A).

Or in the conventional notation:

2.	 ∀a, b∈A ((a & b) ∈ A, (a v b) ∈ A).
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Definition 4: Maximun and Minimun of a Lattice.

A lattice Ӕ = <A, ≤ > has maximun and minimun iff:

1.	 There is an element in A, say 1, such that all elements in the lattice are 
“below” it.

	 So, 1 is a maximun iff 1 ∈ A & ∀ a ∈ A (a < l).
2.	 There is an element in A, say 0, such that all elements in the lattice are 

“above” it.
	 So, 0 is a minimun iff 0 ∈ A & ∀ a ∈ A (a > 0).

Definition 5: Complemented Lattice.

If Ӕ = <A, ≤ > is a lattice with maximun and minimun, then the complement 
of any element can be defined as follows:

a' is the complement of a ∈ A iff a & a'= 0 and a v a'= 1.

Ӕ is a complemented lattice iff every element in Ӕ has a complement.

Definition 6: Distributive Lattice.

A lattice Ӕ is distributive iff ∀a, b, c ∈ A the following hold:

1.	 a & (b v c) = (a & b) v (a & c).
2.	 a v (b & c) = (a v b) & (a v c).

Definition 7: Boolean Algebra.

A Boolean algebra is a complemented distributive lattice.
Lattices can be drawn schematically by so-called Hasse diagrams. A straightforward 

example of a Boolean algebra containing two elements {1, 2} can be easily constructed:

(1, 2)

0

1 2
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Definition 8: Lindenbaum Algebra.

The algebra of classical propositional logic is a Lindenbaum algebra. A classical 
algebraic model <B, I> consists of the algebra of truth-values B = <{0,1}, v, &, ¬> 
together with an interpretation I: P → {0,1}, –where P is the set of propositions9–, 
such that the following conditions are fulfilled:

1.	 I (T) = 1
2.	 I (F) = 0
3.	 I (¬ p) = ¬I (p)
4.	 I (p & p') = I (p) & I (p')
5.	 I (p v p') = I (p) v I (p')

A Lindenbaum algebra is an algebra L of propositions: L = <≈, +, ×, –, 0, 1>, 
– where ≈ is an equivalence relation–, such that the following can be defined:

1.	 1 = [T]
2.	 0 = [F]
3.	 ¬[p] = [¬ p]
4.	 [p] × [p'] = [p & p']
5.	 [p] + [p'] = [p v p']

Corollary 8b: A Lindenbaum algebra is Boolean.

Definition 9: Modular Lattice.

(b,c) is a modular pair if ∀ a ≤ c (a v (b & c) = (a v b) & c).
A lattice is modular iff every two elements of it are a modular pair, that is iff 

a ≤ c implies a v (b & c) = (a v b) & c for all a, b, c of the lattice.

Corollary 9b: Every distributive lattice is modular.

However, the opposite does not hold: some modular lattices are not distributive. 
Modularity is thus a weaker requirement than distributivity.

Definition 10: Involutive Dual-Automorphism.
A homomorphism is a mapping h: L1 → L2 of a lattice L1 into a lattice L2 such 

that the following hold for all a, b ∈ L1:

9  Propositions are defined by their having a definite truth-value associated to them (a 
proposition always has some truth-value). 
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1.	 h (a v b) = h (a) v h (b).
2.	 h (a & b) = h (a) & h (b).

An isomorphism is a one-to-one homomorphism. An automorphism is an 
isomorphism of the lattice with itself. A dual-isomorphism is a one-one mapping 
d: L1 → L2 such that a ≤ b implies d(b) ≤ d(a) for all a, b ∈ L1. A dual-automorphism 
is a dual-isomorphism of a lattice with itself.

An involutive dual-automorphism of a lattice L is a dual-automorphism d 
such that d(d(a)) = a for all a ∈ L.

Definition 11: Orthocomplemented Lattice.

A lattice L is orthocomplemented iff it possesses an involutive dual-automorphism 
which satisfies the following:

a ≤ d(a) → a = 0 for all a ∈ L.

We denote d(a), –or a'–, as the orthocomplement of a. The operation d, –or '–, 
is an orthocomplementation.

Definition 12: The algebra of Hilbert Space.

The algebra of the subspaces of a Hilbert space is an orthocomplemented 
modular lattice (orthomodular lattice).

The proof and significance of definition 12, as asserted by Birkhoff and Von 
Neumann, is the subject of discussion in section 4 of this dissertation. First, in 
section 3, the formalism of quantum mechanics is introduced.

3.	 The Von Neumann formalism of Quantum Mechanics

Von Neumann introduced the notion of dual evolution in 193210. In the 
Von Neumann formalism, a quantum mechanical system obeys Schrödinger’s 
equation except when subject to an interaction. There are thus two different rules 
by which a system, described by a statistical operator U, might evolve. The first 
one transforms the original U into some Ut in a causal, deterministic fashion, as 
prescribed by Schrödinger’s wave-mechanics:

Ut = exp (-2πitH/h) U exp (2πitH/h)	 (1)

10  The discussion in this section follows (Von Neumann 1932) and (Redhead 1987).
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The second one transforms the system from U into Ut, in an indeterministic, 
acausal and instantaneous manner. Moreover, it transforms pure states into 
mixtures11.

Ut = Σn=1 (UΦn, Φn) P [ |Φn>]	 (2)

A measurement has two parts: an interaction and an observation. The 
interaction, in the Von Neumann formalism, has the effect previously described: 
the pure state becomes a mixture. The observation, on the other hand, has 
the effect described in quantum-mechanics as the collapse of the wavefunction: one 
particular eigenstate is selected. The mathematical means to represent such action 
(the projection operators) were also given by Von Neumann. In equation (2) 
above, P [ |Φn>] is a projection operator; specifically, the one that projects any 
vector in Hilbert Space into the subspace spanned by |Φn>.

A projection operator or a projector, P, is an idempotent Hermitian operator. 
Idempotency implies that P = P2. An operator is Hermitian (or self-adjoint) iff it 
is equal to its adjoint: P = P, where the adjoint is defined as follows:

<x P┘ (y) > = <y P(x)>*, ∀x, y ∈ V

Here: < | > indicates Dirac inner product, * is the complex conjugate and V 
is the Hilbert space on which we are operating.

Several interesting results can be seen to apply to projectors. If the initial 
wave-function is given by

|ɸ > = Σi=1
Nci|qi> and the observable we are interested in is given by  

Q |qi> = qi |qi> then we can always write a projector as follows: P [ |qi>] = 
|qi> < qi|.

11  Or mixtures into different mixtures. In this dissertation the convention adopted in 
quantum logic is followed, –unless otherwise stated–, to assume that the quantum mechanical 
system is in a pure state. Most authors take this convention for granted (e. g. Van Fraassen 
1975), but it is by no means clear to me that such convention is not eventually going to affect 
the discussion. On the contrary, it seems meaningful to argue that, since quantum logic 
sets conditions for truth and validity of quantum mechanical statements, it might become 
relevant to discuss whether situations can arise in which no true description can possibly be 
extracted from a pure state, but such description is represented by a mixture (given that the 
ignorance interpretation of mixtures is discarded). As regards this possibility, (Prigogine 
1984), for example, argues for the physical non-existence of pure states; in his description all 
quantum mechanical states are mixtures. 
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This is certainly a projector for, if applied to any wavefunction |ɸ >, it gives 
the component of the expansion associated with the relevant subspace:

P [ |qi>] |ɸ> = |qi> < qi |ɸ > = ci |qi>.
The domain of the projector is the whole vector space V. The range is the 

one-dimensional subspace spanned by the particular eigenvector. It comes then 
as no surprise that Σi P [|qi>] = I where I is the identity operator.

Projectors obey orthogonality relations:

P [ |qi>] x P [ |qj>] = δij P [ |qi>]

And their eigenvalues must be 1 or 0:

P [ |qi> ] |qi> = qi |qi> = P2 [ |qi> ] = qi
2 |qi>

by the condition of idempotency, so qi
2 = qi and that implies qi = 1 or qi = 0.

If two projectors commute: PQ (|qi>)	= 1 |qi>.
If they don’t commute, then:	 = 0 |qi>.

The spectral theorem is a central result of the Von Neumann formalism. It 
expresses the peculiarity that, any observable can be written in terms of projectors:

Q = Σi qi P [ |qi>].

Finally, it is convenient to remark that it is possible to write projectors for the 
case of degenerate eigenvalues as well. Redhead denotes such cases as follows:

PQ (qi) = Σj | qj = qi P [ |qi>]

where the range of the projector is the subspace spanned by all the eigenvectors 
|qi> with qj = qi (a subspace is spanned by a set of vectors if every element in the 
subspace can be expressed as a linear combination of members of this set).

4.	 The Logical Structure of Quantum Mechanics

This section contains a discussion of the classic 1936 paper by Birkhoff and 
Von Neumann, “The Logic of Quantum Mechanics” (from now on: LQM). LQM 
historically set the arena for the vast majority of the contributions in the field of 
quantum logic. More to the point of this dissertation, LQM already contains the 
main ideas upon which Hilary Putnam and David Finkelstein base their arguments 
for the empirical character of logic. The arguments by Putnam and Finkelstein 
will be discussed in section 5, and the claim that the authors derive from these 
arguments will be shown (in section 6) to have been put under serious pressure (if 
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not just to have been simply refuted) by more general philosophical considerations 
about the status of logic. Some of the counterarguments used against Putnam 
and Finkelstein will, in turn, prove to have roots in some of the implicit ideas 
contained in the original LQM paper by Von Neumann and Birkhoff.

Therefore, this section sets the discussion for the rest of the dissertation. Some 
of the issues that will be reviewed in posterior sections are already anticipated here 
–e. g. the important notion that the conceptual changes brought about by quantum 
logic are of a fundamentally semantical nature. This anticipation is achieved via the 
insertion of comments and explanations from Van Fraassen (1975). In his paper, 
Van Fraassen manages to prove convincingly that there exist several choices for 
the construction of a quantum logic. Birkhoff and Von Neumann choose a specific 
set; others, like Reichenbach, make different choices. Even more significantly, 
other choices are still available: –at least by 1975, quantum logic was not yet an 
exhausted discipline.

Quantum logic springs from the possibility of finding a relationship 
between elementary statements of quantum mechanics (what I shall call the 
propositions of quantum mechanics) and the mathematical abstract space upon 
which the formalism of quantum mechanics is founded. Such possibility arises 
equally in classical mechanics, in electromagnetism, or in thermodynamics. The 
fundamental difference is that the propositional calculus rendered by any classical 
theory of physics is a Boolean algebra, while the underlying lattice corresponding 
to quantum mechanics is an orthocomplemented modular lattice (if the Hilbert 
space is taken to be finite-dimensional).

One of the aims of LQM is to prove our Definition 12 in section 2, namely 
that the algebra of subspaces of a (finite) Hilbert space is an orthomodular lattice. 
Another aim is to show what the lattice of a Hilbert space is not, namely it is 
definitely not a distributive lattice, and cannot consequently be Boolean. The 
importance of this negative result is great: –the logic of quantum mechanics is 
totally different to the logic of any other classical theory, and, more importantly, 
it is different the logic expressed in the propositional calculus. I shall not stress 
this point any more in this section: from the results of lattice theory, it is clear 
(Definition 8) that the Lindenbaum algebra is Boolean; so, if the lattice of the 
subspaces of Hilbert space is not Boolean, then it is clear that quantum mechanics 
does not correspond, in logical terms, to the propositional calculus.

For the time being, I shall just review the proofs contained in LQM of the 
negative result (the lattice of quantum mechanics is not Boolean) and of the positive result 
(the algebra of the subspaces of a finite Hilbert space is an orthomodular lattice). Later, in part II 
of my dissertation, I will comment on the philosophical import of these two results.
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LQM starts by defining two different kinds of abstract spaces, the observation 
space τ, and the phase space Σ. The latter is a very common notion in physics: it 
is an xn-dimensional space, where n is the number of individual elements that 
constitute a physical system Ç, and x is the number of degrees of freedom of 
every single element. The only free parameter is time. In classical mechanics 
the physical system Ç is at each instant represented by a point in phase space 
Σ. In quantum mechanics, as in electrodynamics, Ç is represented in Σ by a 
function, not a point. The quantum mechanical phase space Σ is the Hilbert 
space of infinite dimensions; and the quantum mechanical phase functions are 
the so-called wave-functions.

The other abstract space, the observation space τ, is defined, according to 
LQM, not as a mathematical space but as a physical space. I quote from LQM: “It 
follows that the most general form of prediction concerning Ç is that the point 
(x1, …, xn) determined by actually measuring (µ1, …, µn) will lie on a subset S of 
(x1, …, xn)-space. Hence, if we call the (x1, …, xn)-spaces associated with Ç its 
‘observation-spaces’ we may call the subsets of the observation-spaces associated 
with any physical system Ç, the ‘experimental propositions’.” (Birkhoff and von 
Neumann 1936: 106). So Σ contains mathematical entities but the observation 
space –let us call it τ–, contains actual experimental statements in physicalistic 
language. Van Fraassen calls these, elementary statements, because he wants to avoid 
the word proposition, which implies a definite truth-value and the principle of 
bivalence. But in the context of LQM, that is the euphemism of a logician. It is 
simply more appropriate to call them propositions, for that is precisely what they are: 
statements whose truth or falsity can be ascertained immediately by observation.

The convictions of LQM are not stated but they are forcefully active from the 
very beginning: –as quickly as possible Birkhoff and Von Neumann run into bivalent 
realism. Not only do they conceive of the elementary statements as propositions, 
they are also going to establish a connection between the mathematical phase-
space and the propositions. Once they achieve that connection, the following 
picture is going to evolve naturally: the propositions will be the syntax of the 
quantum-logical language and the phase-space Σ, through its underlying lattice of 
projection operators, will provide the semantics.12

12  Note already here the echoes of what will be the constant theme of section 6: As 
Dummett seems to have been the first to point out, the fundamental question is whether the 
syntax already incorporates the principle of bivalence through the notion of proposition. Of 
course, that is precisely why Van Fraassen does not wish to accept the description of elementary 
statements in terms of propositions, as it is done in LQM. 
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So far, we have the following scheme:

The aim of LQM is to construct a link between (1) and (2). The link will 
establish what kind of phase space corresponds to what kind of propositions. 
If there is something fundamentally weird about the algebra of projectors in 
phase space, then there will be something fundamentally weird about the logic of 
quantum mechanical propositions as well.

The link can be established through what Van Fraassen calls the mapping h and 
the authors of LQM call the mathematical representative. Let me quote the definition of 
mathematical representative given in LQM: “By the ‘mathematical representative’ 
of a subset S of any observation-space τ (determined by compatible observations 
α1, … , αn) for a quantum-mechanical system, will be meant the set of all points ƒ of 
the phase-space Σ of the system, which are linearly determined by proper functions 
ƒk satisfying α1ƒk = Γ1ƒk , … , αnƒk = Γnƒk ,where (Γ1 , … , Γn) ∈ S” (Birkhoff and 
von Neumann 1936: 108). This is in fact a very ingenious way to introduce the usual 
theory of eigenvalues and eigenfunctions of quantum mechanics: the eigenfunctions 
are, by definition, part of the phase-space Σ; and notice how the meaning-content of 
the original propositions has been drastically reduced to comprise only eigenvalues. 
The passage just quoted truly constitutes a crucial step: –The meaning of the 
propositions has been defined by the formal apparatus of quantum mechanics. This 
is, of course, perfectly legitimate. But it is important to stress, as does Van Fraassen, 
that we are here effectively defining the semantics for the language of propositions:  
–we are allowing quantum mechanics to dictate the semantics for our quantum logic.

The extraordinary result of this definition is that, of course, set-theoretical 
inclusion relationships (and their correspondent associated logical relations) can 
now be applied to the propositions. Surely this is what to provide the semantics was 
meant to signify. Such is the case simply because according to the definition 
above the mathematical representative of any experimental proposition is a closed 
linear subspace of Hilbert space. Thus, the following statements concerning two 
propositions P and Q are found to be equivalent:

(1)	 The mathematical representative of P is a subset of the mathematical 
representative of Q. Symbolically: Ω(P) ∈ Ω(Q), where Ω stands for mathematical 
representative, and ∈ is set-theoretical inclusion.

States Elements of phase space. (1)
Physical 
System Measurable physical magnitudes Propositions.                      (2)
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(2)	 P implies Q –ie. the empirical prediction of Q is certain if the empirical 
prediction of P is certain. Symbolically: P ⟶ Q.

Van Fraassen (1975) shows that the main achievement of LQM is to keep the 
language closed under the usual statement connectives, yet to hold bivalence for 
the elementary statements (ie. to hold propositions). In order to achieve that, the 
authors of LQM need to prove that negation, conjunction and disjunction, are 
well defined relationships in the logic of propositions. This can be done by means 
of the relations of set-theoretical inclusion in phase space Σ –ie. in Hilbert space: 
–if one can prove that negation, conjunction and disjunction are well defined for 
the mathematical representatives then one would have automatically obtained a 
proof (through the application of the mathematical representative) to the effect 
that negation, disjunction and conjunction are also well defined for the logic of 
propositions. So, once again, the definition of mathematical representative plays 
the crucial role of setting a connection between phase space Σ and observation 
space τ.

The mathematical representatives are subsets of Hilbert space: –The following 
two results are straightforward:

(3)	 The mathematical representative of the negative of any experimental 
proposition is the orthogonal complement Ω' of the mathematical representative Ω of 
the proposition itself.

(4)	 The closed linear sum Ω1 + Ω2 of any two closed linear subspaces Ωi of 
Hilbert space, is the orthogonal complement of the set product Ω1'·   Ω2' of the 
orthogonal complements Ωi' of the Ωi.

Therefore if one postulates, as the authors of LQM do, that (5) the set-theoretical 
product of any two mathematical representative is itself a mathematical representative, then one 
has defined (3): negation (complementation), (4): disjunction (linear sum) and (5): 
conjunction (product) for the mathematical representatives (in phase space Σ) of 
the propositions (in observation space τ).

We have seen in the previous section that every projector is associated with a 
subspace of Hilbert space. Thus, every mathematical representative is correlated 
with a projector. Therefore, the usual quantum mechanical operations over 
projectors can now be used to define the operations (3), (4), (5) upon mathematical 
representatives in phase space Σ; these latter operations will then induce logical 
relations upon their equally associated propositions in observation-space τ: –The 
lattice for projectors dictates the logic of propositions.
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It is surprising that, having applied such reasoning to define the operations of 
negation (3), disjunction (4) and conjunction (5) upon mathematical representatives, 
the authors of LQM now attempt to prove their negative result, –about the failure 
of the distributivity law in quantum logic–, by totally different means13. In fact, at 
this stage, the argument from the projectors is straightforward14: Imagine |c> is 
a linear combination of |a> and |b>, so:

P [ |c>] P [ |a>] + P [ |b>] where + does not represent sum but linear span.

Then: P [ |c>] ∩ P [ |a>] + P [ |b>] = P [ |c>] ∩ P [ |a>] + P [ |c>] ∩ P 
[ |b>] is the distributive law for projectors and it obviously does not always hold, 
for the LHS = P [ |c>] while the RHS = 0 + 0 = 0. The logic of propositions 
follows the relations between projectors, so the first negative result of LQM is 
finally proved: the lattice of quantum mechanics is not Boolean.

At this stage, the second positive result of LQM (The algebra of the subspaces 
of a finite Hilbert space is an orthocomplemented modular lattice) can also be derived. 
The Ortho-complementarity part is implicit in (3): –We saw in section 3 that 
the projectors obey orthogonality conditions and given that the eigenvalues of a 
projector are either 1 or 0, they also obey complementarity conditions.15 So, by (3), 
the logic of propositions must incorporate Ortho-complementarity. What about 
the other part of the positive result, namely modularity? Here is the proof:

Take three subspaces of Hilbert space, let us call them a, b, c. The condition 
of modularity (see section 2, definition 9) applies only when a c. Thus, whatever 
b is, the following holds: a (a U b) ∩ c. And it is always true that b ∩ c (a U b) 
∩ c. So, in our case: a U (b ∩ c) (a U b) ∩ c. Any vector in (a U b) ∩ c can be 
written as § = α + ß (where α ∈ a, ß ∈ b, § ∈ c). But ß = § – α is in c (since § ∈ c 
and α ∈ a which by the initial assumption is already in c). Hence § = α + ß is in 
a U (b ∩ c). Hence (a U b) ∩ c a U (b ∩ c). The algebra of projectors is thus a 
modular lattice, and so must be, thus, the logic of propositions.

The authors of LQM then go on to prove that an infinite dimensional Hilbert 
space does not even obey modularity. However, I shall be content with the two 
results obtained so far. They constitute the basis for the philosophical elucidations 
about the status of logic that I shall attempt to discuss now.

13  They give a physical thought experiment which turns out to be based on seriously flawed 
arguments: we will come back to this issue in section 7. 
14  As given in Redhead (1987).
15  For a more detailed proof, see Van Fraassen (1975: 595). In LQM the proof is taken for 
granted. 
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Part II: Philosophy Of Quantum Logic

5.	 Putnam’s conceptual revolution restated.

The conceptual revolution can be summarized by means of Putnam’s very 
famous analogy16:

	 geometry		  quantum logic
		  =
	 general relativity		  quantum mechanics

Quantum mechanics ought to change our logic, just as general relativity 
once led to a change in geometry. What were assumed to be necessary truths 
for thousands of years, in logic as in geometry, must be susceptible to revision 
by experiment. This extremely strong view about the revisability of logic, as 
put forward by Putnam, is a result of both the acceptance of the Birkhoff-Von 
Neumann interpretation and of a philosophical belief that Putnam presumably 
adopted from Quine’s (1951) “Two Dogmas of Empiricism”. What makes the strong 
interpretation strong, is the combination of bivalent realism and the belief that, if 
there is a conflict between the logic of thought and the logical structure of the 
world, then the former must change.

Is there such a conflict? Are there any classical-mechanical truths, –true by 
virtue of the canons of classical logic–, that are false in quantum-mechanics, –
false of course according to the same classical canons–? If so, is there any new set 
of rules that would make those falsities –true? Putnam swiftly suggests that the 
distributive law is the source of all such cases of logical incompatibility.

Consider one of those conflictive cases. The following statement (i) would be 
true in classical physics but false in quantum mechanics: The particle A has position 
x and the particle A has momentum r’. Putnam’s argument is as follows: statement 
(i) results from the observation (true both in classical and quantum logic) that 
the particle A has position x and (the particle A has momentum r1 or the particle A has 
momentum r2 or … or the particle A has momentum rn) (ii). This is indeed true in the 
Birkhoff-Von Neumann framework (for an n-dimensional Hilbert space) if the 
first conjunct is true, i.e. If the particle has been found to have position x. By 
virtue of the definition (4) of disjunction, given in the previous section, the second 
conjunct of the expression spans the whole space V, and is therefore true as well. 

16  The analogy is in Putnam (1976). However, the discussion in this section borrows mostly 
from Putnam’s (1968).
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If we now assume distributivity (permitted in classical logic), we get a statement 
that is true in classical mechanics: (The particle A has position x and the particle A has 
momentum r1) or (The particle A has position x and the particle A has momentum r2) or … 
or (The particle A has position x and the particle A has momentum rn). (iii)

Now, Putnam crucially argues, disjunction preserves truth-values, both in classical 
and quantum logic, so the truth of the above statement implies the truth of some 
one of the disjuncts –and that proves that our initial statement (i) holds true 
(in classical mechanics). However, it is clear from definition (5) of conjunction 
that (i) does not hold in quantum mechanics: –The intersection of the subspaces 
spanned by a momentum projector and a position projector is the null space (they 
are not commutable operators!). In the Reichenbach interpretation that would 
imply that the truth of (i) is indeterminate, but in the Birkhoff-Von Neumann 
interpretation –because it is founded upon bivalent propositions–, any proposition 
that is mapped onto the null space is a necessarily false statement. Why does (i) 
not hold true in quantum mechanics? Putnam readily gives the answer: Because 
quantum logic does not possess a distributive law –the derivation of statement 
(iii) from statement (ii) is impossible in quantum mechanics.

A number of assumptions have been presupposed so far: first, the Birkhoff-
Von Neumann picture has been taken for granted; second, it has been assumed 
that the distributive law fails but conjunction, for example, still applies. In the 
Putnam version of LQM, all the usual logical connectives and rules apply, –except 
for distributivity–, and the apply in exactly the same usual way.

So far Putnam has just explored the consequences of LQM in a physicalistic 
language. Putnam’s second belief (the belief in the fallibility of all knowledge, 
included logic) comes in at this stage in the form of a dilemma: “Two propositions 
that are equivalent according to classical logic [say, (i) and (ii)] are mapped onto 
different subspaces of Hilbert space… Conclusion: the mapping is nonsense, or, we 
must change our logic.” (1968: 179) [my italics]. Putnam’s mapping is our old friend, the 
mathematical representative. Nobody with a positive attitude towards science would 
deny the legitimate aspiration to build a connection between the mathematical 
structure of a theory and its empirical statements. So, Putnam, confidently, takes it 
in the latter option: we must change our logic.

It is remarkable that, at this stage in Putnam’s discussion, there is already a 
visible step in the argument that may be cast into doubt. Moreover, it is the very 
first step: –the initial conjunction of beliefs (first, the belief in the correctness 
of the Birkhoff-Von Neumann LQM interpretation of quantum logic; second, 
the belief in the revisability of logic, –given that there is a conflict between logic 
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and the “world”). Of course, none of these beliefs are necessary. First, it may be 
argued that the LQM interpretation is not to be taken for granted (Popper and 
Reichenbach seem to have manifestly rejected it). Even if the LQM interpretation 
(including the use of propositions and the mathematical representative), is 
accepted for quantum logic, it is still not clear why the other belief, –logic is revisable 
by empirical means–, has to be similarly accepted. Even if both beliefs may be 
somehow justified by different arguments, independently of each other, (LQM, 
say, because it goes along with usual practice in mathematical physics; empirical 
logic, say, because it is a very sound and healthy philosophical wisdom)–, that does 
not imply that they are consistent with each other.

This is the central question in the Putnam-Dummett debate. Putnam is 
next going to attempt to show that LQM somehow implies that logic is empirical. 
Dummett will then argue that, in fact, LQM does not only not imply an empirical 
conception of logic, but, on the contrary, in a certain way, LQM is actually 
incompatible with an empirical view of logic. First, in the remaining part of this 
section, I review Putnam’s arguments in this direction; then, in the following 
section, I analyze Dummett’s answer, and I attempt to focus the full debate in the 
terms of the 3-layer epistemological model that I set up in section 1.

Putnam is very much aware of the fact that, in order to prove logic empirical, 
he must show that, in going from classical to quantum logic, the usual logical 
connectives (¬, v, &) have not just simply changed their meaning. What he has 
in mind can be put very crudely by means of the following example: Suppose one 
has a theory that contains just the following two axioms:

1.	 a and (a or b) ⟶ (a or b).
2.	 (a and a) ⟶ a.

where or, and stand for the usual classical v̧  &. A law in this theory would be 
the following:

3.	 a ⟶ a or b.

If this law is found to be false by empirical means, then a conceptual 
revolution as occurred: a logical law has been proved false! But, –as Putnam is 
well aware of–, a sceptic might argue that there is no such revolution: actually, 
no law has been found wrong –it is the connectives or, and that have changed their 
meaning. This can be envisaged in our very crude example as follows: If one makes 
or stand not for the classical v, but for a new logical connective, –let us call it the 
equalizer, w–, defined by the following truth-table,
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a T T F F
b T F T F

a w b T F F T

then, it is clear that, under such change of meaning of the connective or, the law 3.

a ⟶ a w b fails to hold, while both axioms remain true.

Putnam thinks that the change-of-meaning argument, when generalized 
to quantum logic, is used by philosophers in order to minimize the revolution 
of quantum logic. However, he now finds himself in an awkward position: The 
change-of-meaning argument does not need a definition of what the new quantum 
logical connectives stand for; in order to minimize the revolution, it only has to 
be shown that whatever these connectives mean, they do not mean what they used to 
mean. Putnam now wants to prove the opposite – that they mean the same. Following 
Finkelstein, he tries to give an operational definition for the logical connectives: 
given that the operations which define the meanings of the connectives do not 
change, when going from classical to quantum mechanics, the he can claim that 
the meanings themselves cannot possibly have changed.

In LQM, negation (3), disjunction (4) and conjunction (5) were extracted 
from the lattice. In order to be so, implication (2) had to be previously defined. 
Putnam seems to think that if he can show that implication (2) may have an 
operational meaning, then that would automatically set the operational meaning 
for all (3), (4) and (5) –through the lattice definitions of orthocomplement, meet 
and join, respectively. His argument is based on the notion of test: “Let us pretend 
that to every physical property P there corresponds a test T such that something 
has P just in case it ‘passes’ T (i.e. it would pass T, if T were performed) […] We 
define the following natural ‘inclusion’ relation among tests:

T1 ∈ T2 just in case everything that ‘passes’ T1 ‘passes’ T2

This inclusion relation may be operationally tested […] Take out a fair sample 
S1, an apply test T1 to every member of the sample […] take a different fair sample 
S2 and apply T2. If all the elements of S2 pass T2, the hypothesis that “all the things 
that pass T1 also pass T2” has been confirmed.” (Birkhoff and von Neumann 
1936: 195)

And, if the operational meaning of the logical connectives v, &, ¬, remains 
the same, in quantum as in classical logic, then logic would have been proved to 
be empirical.
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6.	 Meaning, realism and the minimized revolution

Of course, opponents to the strong interpretation of quantum logic still have 
the same powerful counter-argument available: –they can try to show that the 
logical connectives, however defined, do actually, in the transition from the old 
logic to the new logic, undergo a change of meaning. Furthermore, it may be 
sufficient to prove that the way in which these connectives are derived from 
the set-theoretic inclusion relation changes, when one goes from a Boolean 
algebra to an orthomodular lattice (because even if implication may be derived 
operationally from set-theoretical inclusion, it has only been assumed that, 
according to definitions (3), (4) and (5), negation, disjunction and conjunction 
are always defined, or defined in the same way, in terms of set-theoretical inclusion). 
And, in fact, it is enough with a proof to the effect that any one connective has 
undergone such change, in its derivation from the basic algebraic set structures.

An argument that shows that a change does actually take place, –when shifting 
from Boolean lattices to orthomodular lattices–, in the meaning of the logical 
negation (¬), has been presented by Bell and Hallett (1982). Their reasoning is 
neat and can be put in a nutshell as follows: Given a certain condition for the 
definition of invariance of meaning of a term, this definition can be seen to apply 
to the terms expressed by v and & as they stand in the orthomodular lattice of 
quantum logic; however, the same definition does not apply to ¬.

Bell and Hallett express their condition for the invariance of meaning as 
follows: “If two terms t and t' are defined in terms of the primitives a, b, … etc. 
in non-equivalent ways, or if one is so definable and the other is not, then they 
have different meaning relative to a, b…” “More particularly” –they continue–, 
“if two structures L and L' both have the primitives a, b, … etc. and t is definable 
in terms of a, b, … in one and not in the other then we will assume that t has 
shifted its meaning in the passage from one to the other” (Bell and Hallett 1982: 
363). In an orthomodular lattice, the operations v, & can be defined in terms 
of set-theoretical inclusion (≤), just in the same way as they can be defined in a 
Boolean algebra, ie. by the equivalence with meet and join:

a & b = c ⟷ {x: x ≤ c} = {x: x ≤ a} ∩ {x: x ≤ b}.
a v b = c ⟷ {x: c ≤ x} = {x: a ≤ x} ∩ {x: b ≤ x}.

In a Boolean algebra, negation (¬) can, of course, be also defined in terms of 
≤ and of & (and hence of ≤), by the equivalence with complementation, *:

a = b* ⟷ {x: x ≤ a} = {x: b & x = 0}	 (*)



Análisis. Revista de investigación filosófica, vol. 12, n.º 1 (2025): 47-92

The Logic of Quantum Theory Revisited 87

However, in a non-Boolean Ortho-lattice, –whether modular or not–, ¬ cannot 
be defined in terms of ≤, as in (*). The reason is the following: while a Boolean 
algebra is complemented, an Ortho-lattice is always orthocomplemented. In an 
Ortho-lattice, negation (¬), can only be defined in terms of some orthogonality 
relation, ⊥. The orthocomplement is given by:

a = b* {x: x ≤ a} = {x: x ⊥ b}	 (**)

And, of course, in quantum logic, negation (¬), is defined as the 
orthocomplement. Thus, it is clear that the classical logical negation (*) and the 
quantum logical negation (**) are by no means the same, nor is the term ¬ defined 
upon the same primitives (≤, & or ⊥) in both of them.

If there is variance of meaning, then, what does quantum logic have to say 
to the philosophy of logic? Or is quantum logic just a syntactical game –fixing 
the set of rules that will give consistency to some algebraic structures? Dummett 
(1976) has provided a further insight by showing that the attempt to change the 
logic of thought is based on a philosophical longing for epistemological realism. 
He has emphasized that a fundamental aspect of Putnam’s program is the belief 
that, if logic turned out to be revisable, then quantum logic would presumably 
establish a realistic interpretation of quantum mechanics. This belief of Putnam’s 
can be schematically represented as follows:

Classical universe:	 Pc + Mc + Lc
Quantum universe:	 Pq + Mq + Lc
Alternative quantum universe:	 Pq + Mc' + Lq

The classical description contains the classical physics (Pc), the classical 
realistic metaphysics (Mc), and the classical logic (Lc). The current quantum 
description offered by, say, the Copenhagen interpretation, contains the quantum 
physics (Pq), the quantum, complementary (non-realistic) metaphysics (Mq), and 
the old logic (Lc). The new quantum framework, advocated by Putnam, would 
rescue some kind of realistic metaphysics (Mc'), by paying the price of having to 
change the logic of thought (from Lc to Lq).

So, –Dummett claims–, it is the search for a realistic metaphysical 
interpretation of theoretical physics, which prompts the proposal to revise our 
logic. But, argues Dummett, the result of Putnam’s proposal turns out to be 
precisely the opposite to the intended one. A revision of logic, as implied by the 
strong interpretation of quantum logic, would effectively kill logical realism, –i.e. 
it would deny the possibility of associating every physical statement to a bivalent 
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algebra of truth-values. This is the case because, in quantum logic, the connectives 
change their meanings. In fact, if the distributive law is dropped, all the classical 
logical connectives necessarily will vary their meanings in one particular respect: 
their truth-values will not be capable of reconstruction upon the law of excluded 
middle. Dummett argues as follows: if the law of distributivity does not hold, then 
truths does not distribute upon conjunction or disjunction. It is not a possibility to 
drop a law in logic, and still pretend to keep the same semantical relations –ie. to 
keep the same definition of truth.

For example, Putnam would argue that the truth of statement (ii) of the 
previous section, implies the truth of one of the momentum disjuncts, ie. there is 
a momentum that the particle A has. This is how the realistic metaphysics (Mc') 
comes in: particles are supposed to possess definite momenta, even if their position 
has been previously determined. However, one cannot know what this momentum 
is, –say by affirming statement (iii)–, for such knowledge would require the use 
of the distributive law, and that would result in a quantum-logical contradiction. 
But –Dummett argues–, Putnam is allowing himself, at this point, to use the 
classical definition of truth, –namely, he is distributing truth upon disjunction–, 
in order to prove that the particle has a momentum, –even if he immediately 
concedes that this momentum is impossible to know. Now, –argues Dummett–, 
if we reject the law of distributivity then we must dispense altogether with it from 
the semantics: we cannot pretend to keep on distributing truth upon disjunction. 
It is not legitimate to take the law out from syntax of logical inference and, yet, to 
keep on using it for the semantics of truth. It is therefore Putnam himself, and not 
his opponents, who minimizes the revolution of quantum logic: “It is Putnam who 
cannot for a very long time, appreciate the logic employed in quantum mechanics; 
it is Putnam […] who ‘smuggles in’ distributivity.” (Dummett 1976: 273).

So, there is no possible return to a realistic bivalent metaphysics. The 
framework that accommodates quantum logic looks more like: Pq + Mq + Lq, –
there doesn’t seem to be much improvement over the Copenhagen interpretation. 
Or does it? My opinion is that there is improvement: first, quantum logic helps 
to understand how extraordinary quantum theory is; and, second, it helps to 
understand how powerful the propositional calculus is. In this sense, quantum 
logic ought to be given a heuristic role, but not a normative one; –this takes me 
back to the 3-layer epistemological model.

It is remarkable that Putnam’s argument effectively annihilates the distinction 
that I drew, in section 1, between different forms of realism. If the connection 
between the phase space Σ and the observation space τ is established and the 
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elementary statements are propositions, then either the truth-values of the 
propositions are dictated by the lattice that corresponds to Σ, or the truth-values 
of the propositions dictate what the lattice is like. And, if the truth-values of 
the propositions are determined a priori and independently by experiment, then an 
empiricist conception of logic ought to be accepted: the lattice is determined 
by experiment. In the epistemological model of section 1, this is equivalent to 
establishing a connection between layer 3 (empirical data) and layer 1 (thought), 
such that the empirical data determines the logic of thought, ie. logic depends 
upon the world (the opposite does not necessarily hold). Of course, that is the case 
only if the elementary statements are propositions. And this is the problematic 
assumption; for to accept propositions is to accept metaphysical bivalence, and 
bivalence is not the right metalogical principle to apply to orthomodular lattices.

How do we get out? –or, better, how did we get in? If we disallow a priori the 
possibility of a connection between layers (1) and (3), then we are fine. That’s what 
the 3-layer model does for you –it establishes that the mathematical representative 
is not what it looks like according to Putnam’s programme: it is not a connection 
between the world and the logic of thought. It is just a connection between the 
empirical data (e-values in τ space) and the theory (e-functions in Σ space). No 
inferences are to be made from layer (3) to layer (1). There is never a straight path 
from the empirical data (3) to our thinking (1). Sooner or later, we have to pass by 
layer (2), which contains our theories. This is, also, the sense in which Dummett’s 
(1976) paper is a Wittgensteinian piece of work, for it was Wittgenstein in the 
Tractatus, who argued that there is a fundamental cleavage between logic (the 
world of “facts”), and the world of material objects.

7.	 The revolution maximized

The following awkward situation has emerged: LQM presents a quantum 
logic, the logic induced by an orthomodular lattice, –the lattice of Hilbert space. 
This is a logic founded upon the principle of bivalence: propositions are either 
true or false according to whether they are mapped onto the whole space or the 
null space. However, a result of such logic is the breakdown of the distributive 
law. The distributive law is necessarily implied by bivalence. Thus, if this LQM 
logic, –as it turns out, without distributive law–, is implemented as the logic of 
thought, then, the foundations, upon which the results of LQM were originally 
established, are found to be misplaced.

Popper (1968), in an otherwise severely criticized paper, seems to have had 
the intuition that there was to be trouble, in LQM, with the principle of bivalence. 
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The history of the argument is indeed bizarre and worth going through: Poper 
set himself the task of scrutinizing LQM, particularly the thought experiment 
designed by the authors to prove the failure of the distributive law in quantum 
logic. In doing so, Popper found out that the authors of LQM implicitly rejected 
the same law of excluded middle that they explicitly adopted for their propositions.

Now, the thought experiment turns out to contain a serious flaw, as Popper 
himself was able to prove. The experiment goes as follows:

“The distributive law may break down in quantum mechanics […] If a denotes 
the experimental observation of a wave-packet φ on one side of a plane in 
ordinary space, a' correspondingly the observation of φ on the other side, and b 
the observation of φ in a state symmetric about the plane, then (as one can readily 
check): b ∩ (a U a') = b ∩ 1 = b b ∩ a = b ∩ a' = (b ∩ a) U (b ∩ a')” (Birkhoff 
and von Neumann 1936: 113).

But – as Popper (1968) quickly pointed out–, “a' (the complement of which 
according to Birkhoff and Von Neumann is the ordinary classical set-theoretic 
orthocomplement) does not ‘correspondingly’ denote its observation of position 
on the other side. a' denotes, rather, the property ‘not on the one side’” and “this is 
perfectly compatible with the property denoted earlier by b”, so that “the thought 
experiment by Birkhoff and Von Neumann breaks down” (Popper 1968: 685).

In fact, the thought experiment seems totally unnecessary and inappropriate, 
in the context of LQM. The proof of the failure of the distributive law may 
be easily derived from the algebra of projectors, as shown on pages 22-23 in 
this dissertation. There is no need whatsoever for a thought experiment. So, 
what is it doing, in such an otherwise brilliant and consistent paper as LQM? 
Popper suggests that the only way to make sense of the thought-experiment is by 
assuming the rejection of the law of the excluded middle (a direct consequence 
of the rejection of metaphysical bivalence) by Birkhoff-Von Neumann, “for the b 
of their thought experiment is clearly intended as a third possibility, incompatible 
with either a' or a”.

Now, this implicit rejection of bivalence is somewhat surprising, for such 
is precisely the result of Dummett’s analysis of Putnam’s paper. The authors of 
LQM reject bivalence, –which they had been blindly advocating all the way– 
precisely when they set to prove their negative result. How are we going to interpret 
this fact? Are we going to assume, as does Popper, that this was “no more than 
a simple slip –one of those slips which, once in a lifetime, may happen even to 
the greatest mathematician”? May it be suggested that, on the contrary, there 
might be some particular reason for this thought experiment? It is a conceivable 
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possibility that the authors of LQM somehow had an intuition about what direction 
quantum logic was about to take –not just the simple rejection of a law, but a real 
revolution, namely, a total rejection of metaphysical bivalence.
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