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Abstract

Antibody production using CHO cells is often
inefficient due to trial-and-error approaches. To
improve this, we developed a mathematical model
based on Flexible Nets that integrates cell
metabolism and bioreactor dynamics. This
multi-scale modeling enables systematic, optimized
design of antibody manufacturing, enhancing
productivity while reducing time and cost.

Introduction

Monoclonal antibodies are vital therapeutic tools
used to treat cancers, autoimmune diseases, and
more. Their effectiveness depends on low
immunogenicity and proper structural processing
[1], which is best achieved using mammalian
systems like Chinese Hamster Ovary (CHO) cells.
CHO cells produce antibodies closely resembling
human ones, with reduced contamination risks,
making them ideal for large-scale production.
Though advances have greatly increased yields,
large-scale production remains costly. Traditional
optimization methods face limitations in capturing
metabolic complexity. Computational modeling
offers a more efficient path by simulating cell
behavior and guiding experiments. Techniques like
Flux Balance Analysis and hybrid models enable
dynamic metabolic predictions. Genome-scale
models (GEMs) help design experiments but can't
fully capture environmental influences. Therefore,
new computational frameworks are needed to
manage multi-scale, uncertain, and nonlinear
biological systems.

This contribution presents the method described in

[4].

Materials and methods

Flexible Nets description. Flexible Nets (FNs)
consist of two connected subnets, an event net and
an intensity net, each of which is a tripartite graph
[3]. The three vertices of these nets are:

* Places (~O ): metabolites

* Transitions (:l ): reactions

* Handlers (*): capture the way in which the
occurrence of a reaction modifies the concentration
of metabolites (event handler) and the way in which
the concentration of metabolites modulates the
reaction rates (intensity handler).

IgG synthesis modeling in CHO cells. We have used
the iCHOvl model from BiGG Models which
contains the metabolic network of Chinese Hamster
Ovary (CHO) cells [4]. This model was enriched
with the reactions necessary for the synthesis of IgG
antibodies:

R;: 39Ala + 14Arg + ... + 1324GT P + 1326H20 -
IgGsubunit + ... + 1326H

R,: 2 1gGsubunit — IgG

R;: 1gG - ©

This is graphically represented in Figure 1.

Step-by-step modeling of the bioreactor. The
bioreactor was modeled by:

1. Adding the necessary reactions to the CHO
model for producing IgG antibodies.

2. Modeling the nutrients’ fluxes from the
medium to the tank.

3. Modeling the nutrient uptake from the tank.

4. Modeling the nutrients’ fluxes from the
bioreactor to the effluent.

5. Modeling the biomass in the bioreactor.
6. Adding the IgG antibody production.

Results

Model validation. To evaluate our model’s
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predictive capacity, we compared its predicted IgG
production with experimentally reported values [4]
(Table 1).

Tabla 1. Model validation with two experimental datasets.

HP Late Exp phase
Experimental | 2.02 - 107 2.44 - 107
Model 2.04-107° 3.205 - 107
Relative error 99-1073 0.3

Optimization of the IgG production. Our model
highlighted the significant impact of dilution rate
and cell density on IgG production in CHO cell
cultures, pinpointing ideal production conditions at
specific values of dilution rate and biomass (Figure
2), specifically in the central part of the heatmap.
Medium minimization. We identified nutrients that
were supplied in excess and established the lowest
concentrations necessary to maintain a targeted level
of IgG production. Our optimization efforts focused
on: 1) reducing the overall cost of the growth
medium, and 2) minimizing the total number of
different nutrients included in the medium.

Conclusions

This research introduced Flexible Nets as a
modeling framework that integrates intracellular
metabolic fluxes with macroscopic bioreactor
dynamics under a multi-scale modeling framework,

Ala Arg GTP H,0

a=30r, b=14r, ..d=1324r,

e=1320r, g=r. ..., k=1326r

Dilutior rate (b~

o

enabling simulation of complex, dynamic, and
nonlinear systems. The developed FN model
successfully predicted IgG antibody production by
incorporating experimental data, media formulation,
uptake rates, and continuous culture dynamics.

Our model also identified some amino acids as
limiting factors. Adjusting dilution rate and biomass
further improved production. By optimizing
medium composition and cost, the model guides
more efficient IgG production. This highlights the
power of combining computational and
experimental approaches in bioprocess optimization.
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Figure 1. FN modeling the reactions that produce IgG in the iCHOv1 model.
Figure 2. IgG synthesis reaction flux depending on the dilution rate and biomass.
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