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Abstract 
This study presents a novel approach to deepening 
the physical understanding of message passing 
architectures within simulations of physical systems. 
By tailoring the design to the underlying nature of 
hyperbolic, parabolic, and elliptic partial differential 
equations (PDEs), the method ensures effective 
information propagation throughout the 
computational domain. This alignment between 
Graph Neural Network (GNN) architecture and the 
governing physical principles enhances both the 
accuracy and robustness of simulations, enabling 
more efficient and high-fidelity modeling across 
diverse physical regimes. 

Neural PDEs Solvers 
In his renowned essay “The Unreasonable 
Effectiveness of Mathematics in the Natural 
Sciences,” Eugene Wigner (1902–1995) pondered 
the mysterious and astonishing power of 
mathematics to describe and predict real-world 
phenomena. This capability has solidified the 
dominance of traditional numerical methods as 
indispensable tools for solving complex differential 
systems. Partial differential equations (PDEs), 
serving as mathematical translations of physical 
phenomena, often lack trivial or computationally 
tractable solutions. 

However, the advent of artificial intelligence has 
abruptly shifted this paradigm. The optimization of 
solutions from data—understood as discrete 
representations of physical behaviors—combined 
with the universal approximation capabilities of 
neural networks, has unlocked unprecedented 
potential in simulation and efficiency. The use of 
neural networks to solve PDEs is not new, with 
physics-informed neural networks [1] being perhaps 
its most prominent example. Nevertheless, the search 
for neural simulation techniques that rely less on 
initial conditions, boundary constraints, and PDE 

parameters has driven the development of novel 
methodologies. Among the most promising are those 
based on geometric deep learning, as they can mimic 
the cell or mesh structures typical of classical 
discretization methods (finite elements, finite 
volumes, finite differences, etc.) [2]. 

Message-passing neural PDE solvers, as the state-of-
the-art in geometric learning, offer remarkable 
flexibility in obtaining highly accurate and mesh-
independent solutions. They replicate the local 
structure of most physical conservation law 
equations [3–7], functioning as a spatial operator 
capable of capturing even the most nonlinear 
behaviors. However, their hyperparameterization is 
complex, and their interpretability remains an even 
greater challenge. Few studies delve into 
understanding the nature of their efficiency, and even 
fewer attempt to relate their learning mechanisms to 
the intrinsic properties of the systems they aim to 
model. 

Message Passing 

Message passing in Graph Neural Networks 
(GNNs) refers to the process by which nodes 
exchange information through their connecting 
neighbors, given a predefined connectivity. 
While this mechanism has proven effective in 
practice, the theoretical basis for how message-
passing algorithms reconstruct solutions remains 
only partially understood. 

Some studies, such as [4], show that message 
passing can approximate classical finite 
difference schemes. However, their approach 
often requires many more iterations per time step 
than theoretically expected, resulting in nearly 
dense stiffness matrices. 

Other empirical findings suggest that the 
messages exchanged during propagation encode 
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meaningful physical information about the 
problem. As a result, it has been argued that the 
number of iterations per time step must be 
sufficient to ensure that this information reaches 
all parts of the mesh [8]. 

Results  
In this work, we demonstrate that the number of 
iterations required to achieve the maximum accuracy 
provided by the network depends primarily on the 
type of equation governing the physical 
phenomenon. For hyperbolic equations, an 
information wave propagates over time through both 
the physical medium and the network. Drawing 
inspiration from the Courant-Friedrichs-Lewy (CFL) 
condition in finite difference schemes, we establish 
that the necessary condition for attaining asymptotic 
network accuracy is ensuring the number of message 
iterations per time step keeps information ahead of 
the physical wave propagating through the network. 
If the physical wave outpaces the information 
propagation, the network's outputs become invalid. 
Conversely, increasing the number of iterations per 
time step results in highly stable and precise 
solutions. 

For parabolic and elliptic equations, physical changes 
propagate instantaneously. For example, in Fourier’s 
heat transfer equation, a heat flux immediately 
induces a temperature rise across the entire domain, 
with the magnitude of the increase decaying with 
distance from the flux application point. 
Consequently, we show that for elliptic or parabolic 
systems, the number of message iterations per time 
step must be sufficient to propagate information to 
the farthest relevant node in the network. Beyond this 
threshold, additional iterations do not enhance 
accuracy, as demonstrated in Fig. 1. 

The study also reveals that generalization depends on 
whether message passing iterations (MPIs ) match 
the problem’s causal structure. Physics-guided 
problems (with local interactions) generalize well to 
new geometries (Fig 2.), while geometry-guided 
problems require sufficient MPIs to cover the 
domain—otherwise, performance degrades on larger 
or unseen domains. 

Finally, we demonstrate that the latent space of these 
complex architectures contains interpretable 

features, which we correlate with key behavioral 
patterns observed in our study, as illustrated in Fig. 
3. This opens a new path toward interpretability in 
models once deemed too chaotic to analyze—
previously dismissed as mere 'black boxes.' 

Conclusions 
This study explores how message-passing iterations 
in Graph Neural Networks affect their ability to 
model physical systems governed by Partial 
Differential Equations. The findings show that MPIs 
are not just a computational tool but a physics-
aligned process that significantly impacts accuracy, 
generalization, and stability.  

Overall, this work provides a rigorous framework for 
designing physics-aware GNNs, linking the message 
passing algorithm to the underlying physics and 
geometry of the system. These insights offer practical 
guidelines for architecture selection and 
hyperparameter tuning, advancing GNNs in 
scientific machine learning and physics simulations. 
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Figure 1: Solution of a diffusion system (parabolic). (A) Relative error as a function of the number of message 
steps used in each time increment. The vertical dashed line marks the lower bound proposed for this problem. 
If the number of message steps applied is less than the proposed number (B), the predictions of the neural solver 
fail immediately and are corrupted within a few time steps. On the contrary, if the number of message passes is 
larger than the limit proposed in this work (C), the results are stable for a large number of time integration steps. 
Time steps 3 and 7 are shown both in (C) and (B). 
 

 

Figure 2: Visualization of latent pseudo-attention maps during the first prediction step of the plate elliptic 
collision problem. The color scale represents relative normalized values: values closer to one indicate minimal 
change in the latent representation during the aggregation process, while higher values reflect significant 
variation. The model with 15 aggregation steps exhibits stronger activation around the hole region and 
demonstrates a better understanding of the actuator’s influence. In contrast, the model with only 2 aggregation 
steps shows poor representation, with central plate regions lacking information from both boundary conditions 
and the actuator. 
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Figure 3: Extrapolation results of the hyperbolic neural solver on an unseen domain. Although the model was 
trained on a 1 × 1 1×1 plate, it successfully generalizes to a domain extended threefold in the X-axis and 1.5 
times in temporal rollout. This capability is enabled by the local nature of the Graph Neural Network (GNN), 
allowing it to extrapolate effectively in both space and time despite the larger, untrained configuration. 
 

 

 

 


