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Abstract 
Time-Sensitive Networking (TSN) ensures 
deterministic communication using IEEE 802.1Qbv's 
Time Aware Shaper (TAS). Generating Gate Control 
Lists (GCL) is computationally heavy for dynamic 
systems. We propose an incremental MILP 
framework for joint routing and scheduling. It finds 
solutions faster and achieves complete schedules 
where  monolithic methods fail 

Introduction 
Time-Sensitive Networking (TSN) is a set of IEEE 
standards that enables deterministic communication 
over Ethernet and wireless networks, ensuring real-
time requirements. The IEEE 802.1Qbv standard 
delineates a time-triggered communication 
paradigm, incorporating a Time-Aware Shaper 
(TAS) that governs the selection of frames at egress 
queues in accordance with a predetermined schedule. 
The scheduling problem in TSN is critical to ensuring 
deterministic transmission of flows. In addition to the 
scheduling issue, a further significant challenge in 
TSN is the determination of the optimal routing for 
each flow. The trajectory of a time-sensitive flow 
through the network exerts a direct influence on the 
feasibility of the schedule and the overall 
performance of the system.  

Proposed Approach  
We present two different proposals. In the first one, 
we formulate the MILP model by generating the set 
of constraints defined in [1], but instead of applying 
them to a predetermined path, we apply them to each 
pair (si+1, j), where si+1 is the new flow 

entering the system, and j ∈ C 

corresponds to each of the previously 

enumerated candidate paths. In other 

words, we replicate the same flow si+1 
across all its possible paths. This implies that the 

model’s complexity scales with both the number of 
possible paths and the number of frames per flow. 

In the second proposal, we compute all possible paths 
that a flow can take and generate a separate MILP 
model for each one, using the same set of constraints 
from [1]. Once all MILP models are solved, the best 
solution is selected, and the corresponding path is 
assigned to the flow. Although the number of models 
to be solved increases with the number of candidate 
paths, these models are less complex, independent, 
and can be solved in parallel. 

With the objective of evaluating both our approaches, 
we use the use case presented in [2] as a reference, 
which corresponds to an avionics network topology. 
The network topology consists of fourteen end 
stations and five bridges connected in a mesh 
topology, with each end station linked to one of the 
bridges. The use case includes 241 flows, each one of 
them requiring the scheduling of between one and 32 
frames within the hyperperiod. 

Although predefined routes are provided in the 
original use case, we consider only the source and 
destination nodes of each flow, allowing our model 
to determine the optimal path. While the challenge 
includes additional components such as the Credit-
Based Shaper, our evaluation focuses exclusively on 
scheduling using the TAS. 

Experimental Results 
The experiments are conducted on anIntel® Xeon® 
Gold 5120 CPU running at 2.20 GHz, with 56 cores 
(Skylake architecture). The MILP models are solved 
using the CBC[3] solver, version 2.10.12. 

In the first approach, all processor cores are utilized 
in parallel to solve a single, complex MILP model. In 
contrast, the second approach assigns each MILP 
instance to a separate core, allowing them to be 
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computed independently. It is important to note that 
this evaluation does not consider scenarios where the 
number of flows exceeds the number of available 
paths.  

A one-hour timeout is set for the MILP model in the 
first approach. In the second one, this time is evenly 
divided among the individual tasks. The solver may 
find an optimal solution, a feasible (but not 
necessarily optimal) solution, no solution within the 
time limit, or determine that the flow is 
unschedulable. In the parallel version, some routes 
may be solved within the time limit while others are 
not; however, longer routes typically need more 
computation and are less likely to be solved or 
selected. 

Figure 1 shows the obtained results for our different 
approaches. The parallel model successfully 
schedules 206 out of 241 optimally, while the 
monolithic model only manages 27 out of 241.. We 
can also compare the results obtained by both 
approaches. Out of the 50 solutions found within the 
time limit that are not optimal, 37 match the results 
of the second approach. For the remaining thirteen 
solutions, the second approach achieves an average 
improvement of 42.98 % in the value obtained by the 
objective function. 

Conclusions 
This work demonstrates the viability of parallel 
independent MILP approaches for joint routing and 
scheduling in TSN networks. While optimality 
guarantees remain challenging for large-scale 
instances, the parallel solution enables better trade-
offs between solution quality and computation time 
than the monolithic approach, which is critical for 
dynamic systems requiring incremental updates. 

Future work will investigate the impact of solver 
selection and configuration more deeply. This 
includes a systematic exploration of CBC's highly 
parameterizable settings to reduce analysis time, and 

evaluating the performance of commercial solvers 
such as Gurobi [4]. 
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