
Revista “Jornada de Jóvenes Investigadores del I3A”, vol. 13 (Actas de la XIV Jornada de Jóvenes Investigadores del I3A – 25 de junio
de 2025). ISSN 2341-4790.

TSN Incremental Routing and Scheduling through parallel MILP
computation

Álex Gracia1, Juan Segarra1, José Luis Briz1, Alitzel
Torres1,2, Antonio Ramírez2, Héctor Blanco3

1 Affiliation: Grupo de Investigación en Arquitectura de Computadores (gaZ)
Instituto de Investigación en Ingeniería de Aragón (I3A)

Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.
Tel. +34-976762707, e-mail: alex.gracia@unizar.es

2Affiliation: CINVESTAV Unidad Guadalajara
3Affiliation: Intel Deutschland GmbH

Abstract
Time-Sensitive Networking (TSN) ensures
deterministic communication using IEEE 802.1Qbv's
Time Aware Shaper (TAS). Generating Gate Control
Lists (GCL) is computationally heavy for dynamic
systems. We propose an incremental MILP
framework for joint routing and scheduling. It finds
solutions faster and achieves complete schedules
where monolithic methods fail

Introduction
Time-Sensitive Networking (TSN) is a set of IEEE
standards that enables deterministic communication
over Ethernet and wireless networks, ensuring real-
time requirements. The IEEE 802.1Qbv standard
delineates a time-triggered communication
paradigm, incorporating a Time-Aware Shaper
(TAS) that governs the selection of frames at egress
queues in accordance with a predetermined schedule.
The scheduling problem in TSN is critical to ensuring
deterministic transmission of flows. In addition to the
scheduling issue, a further significant challenge in
TSN is the determination of the optimal routing for
each flow. The trajectory of a time-sensitive flow
through the network exerts a direct influence on the
feasibility of the schedule and the overall
performance of the system.

Proposed Approach
We present two different proposals. In the first one,
we formulate the MILP model by generating the set
of constraints defined in [1], but instead of applying
them to a predetermined path, we apply them to each
pair (si+1, j), where si+1 is the new flow

entering the system, and j ∈ C

corresponds to each of the previously

enumerated candidate paths. In other

words, we replicate the same flow si+1
across all its possible paths. This implies that the

model’s complexity scales with both the number of
possible paths and the number of frames per flow.

In the second proposal, we compute all possible paths
that a flow can take and generate a separate MILP
model for each one, using the same set of constraints
from [1]. Once all MILP models are solved, the best
solution is selected, and the corresponding path is
assigned to the flow. Although the number of models
to be solved increases with the number of candidate
paths, these models are less complex, independent,
and can be solved in parallel.

With the objective of evaluating both our approaches,
we use the use case presented in [2] as a reference,
which corresponds to an avionics network topology.
The network topology consists of fourteen end
stations and five bridges connected in a mesh
topology, with each end station linked to one of the
bridges. The use case includes 241 flows, each one of
them requiring the scheduling of between one and 32
frames within the hyperperiod.

Although predefined routes are provided in the
original use case, we consider only the source and
destination nodes of each flow, allowing our model
to determine the optimal path. While the challenge
includes additional components such as the Credit-
Based Shaper, our evaluation focuses exclusively on
scheduling using the TAS.

Experimental Results
The experiments are conducted on anIntel® Xeon®
Gold 5120 CPU running at 2.20 GHz, with 56 cores
(Skylake architecture). The MILP models are solved
using the CBC[3] solver, version 2.10.12.

In the first approach, all processor cores are utilized
in parallel to solve a single, complex MILP model. In
contrast, the second approach assigns each MILP
instance to a separate core, allowing them to be

mailto:alex.gracia@unizar.es
mailto:alex.gracia@unizar.es

Revista “Jornada de Jóvenes Investigadores del I3A”, vol. 13 (Actas de la XIV Jornada de Jóvenes Investigadores del I3A – 25 de junio
de 2025). ISSN 2341-4790.

computed independently. It is important to note that
this evaluation does not consider scenarios where the
number of flows exceeds the number of available
paths.

A one-hour timeout is set for the MILP model in the
first approach. In the second one, this time is evenly
divided among the individual tasks. The solver may
find an optimal solution, a feasible (but not
necessarily optimal) solution, no solution within the
time limit, or determine that the flow is
unschedulable. In the parallel version, some routes
may be solved within the time limit while others are
not; however, longer routes typically need more
computation and are less likely to be solved or
selected.

Figure 1 shows the obtained results for our different
approaches. The parallel model successfully
schedules 206 out of 241 optimally, while the
monolithic model only manages 27 out of 241.. We
can also compare the results obtained by both
approaches. Out of the 50 solutions found within the
time limit that are not optimal, 37 match the results
of the second approach. For the remaining thirteen
solutions, the second approach achieves an average
improvement of 42.98 % in the value obtained by the
objective function.

Conclusions
This work demonstrates the viability of parallel
independent MILP approaches for joint routing and
scheduling in TSN networks. While optimality
guarantees remain challenging for large-scale
instances, the parallel solution enables better trade-
offs between solution quality and computation time
than the monolithic approach, which is critical for
dynamic systems requiring incremental updates.

Future work will investigate the impact of solver
selection and configuration more deeply. This
includes a systematic exploration of CBC's highly
parameterizable settings to reduce analysis time, and

evaluating the performance of commercial solvers
such as Gurobi [4].

Acknowledgements
This work was supported by
MCIN/AEI/10.13039/501100011033 (grant
PID2022-136454NB-C22), and by Dept. of Science,
University and Knowledge Society, Government of
Aragón (grant to reference research group
T58_23R), Spain. A. Torres was supported by
SECIHTI (grant 1141966), Mexico.

References
[1]. TORRES-MACÍAS, A.G. et al. Optimal and Fast IEEE
802.1Qbv Incremental Scheduling. Manuscript under review,
2025.

[2]. BOYER, Marc and HENIA, Rafik. Industrial challenge:
Embedded reconfiguration of TSN. Working paper. July 2024.

[3]. COIN-OR. CBC: COIN-OR Branch and Cut (Version
2.10.12) [software]. August 2024. DOI:
10.5281/zenodo.13347261.

[4]. GUROBI OPTIMIZATION, LLC. Gurobi Optimizer
Reference Manual. 2024. Avalible in: https://www.gurobi.com.

https://doi.org/10.5281/zenodo.13347261
https://doi.org/10.5281/zenodo.13347261
https://doi.org/10.5281/zenodo.13347261
https://www.gurobi.com/
https://www.gurobi.com/

	Abstract
	Introduction
	Proposed Approach
	Experimental Results
	Conclusions
	Acknowledgements
	References

