Methanol Synthesis from CO₂ and Hydrogenation over Cu-ZnO-black TiO₂ Catalysts: Effect of Copper Loading and ZnO Promotion

<u>Laura Chianese¹</u>, Simona Renda², Miguel Menéndez², Giuseppina Iervolino¹, Vincenzo Palma¹, vincenzo Vaiano¹

¹ University of Salerno, Department of Industrial Engineering, Giovanni Paolo II, 132, Fisciano, Italy
²Instituto de Investigación en Ingeniería de Aragón (I3A), Catalysis and reactor Engineering Group (CREG)
Universidad de Zaragoza, Mariano Esquillor s/n, 50018, Zaragoza, Spain.

e-mail: lchianese@unisa.it

Abstract

The thesis focused on methanol synthesis from CO₂ and H₂ over Cu-ZnO-black TiO₂ catalysts with two different copper loadings (15 and 30 wt%). Additionally, the effect of ZnO addition on one of the catalysts was studied, evaluating its activity and selectivity under reaction conditions (WHSV:10h⁻¹, Temperature: 180-300°C, Pressure:20 bar)

Introduction

The global need for sustainable energy solutions has surged in response to the escalating impacts of climate change, largely driven by anthropogenic greenhouse gas (GHG) emissions [1]. Carbon dioxide (CO₂), the predominant GHG, is responsible for nearly 75% of global emissions, primarily arising from fossil fuel combustion in energy production, industrial operations, and transportation sectors [3]. Meeting the targets of the Paris Agreement—which seeks to limit global temperature rise to well below 2°C above pre-industrial levels—requires significant reductions in CO2 emissions and a transition toward carbon-neutral energy systems. In this context, renewable and low-carbon fuels, such as methanol produced via CO2 hydrogenation, are gaining strategic importance [3]. Methanol is a versatile chemical feedstock and energy carrier, increasingly viewed as a promising green fuel [3]. Traditionally synthesized from fossil-based sources like natural gas and coal, methanol production has contributed substantially to GHG emissions. However, a shift toward using CO2 as a carbon source for methanol synthesis offers a compelling route to closing the carbon loop [3]. This process, known as CO2 hydrogenation, involves the catalytic conversion of CO₂ and green hydrogen (H₂) into methanol. The principal advantage of this approach is the ability to generate methanol with a low carbon footprint, effectively turning CO2 from a waste product into a valuable resource [3]. Catalyst selection is critical to achieving high selectivity and efficiency in this

process. Research has extensively focused on optimizing catalytic formulations to improve CO₂ conversion, methanol selectivity, and catalyst longevity. Among the catalysts investigated, copperbased systems are the most widely studied for CO2 hydrogenation. In particular, Cu-ZnO/Al₂O₃historically used for methanol synthesis from syngas (CO and H₂)—remains a reference catalyst due to its robust activity and industrial relevance []. Recent advances have aimed at strengthening the interaction between copper and the oxide support to enhance CO₂ adsorption and activation. Numerous studies have demonstrated that supports rich in oxygen exhibit high activity vacancies for hydrogenation. Accordingly, this study focuses on the use of Cu-ZnO catalysts supported on black titania, which possesses a high concentration of surface oxygen vacancies that enhance CO₂ adsorption and activation efficiency[4].

Experimental and Discussion

The experiments were conducted in a tubular stainless steel reactor (inner diameter: 20 mm) using a CO₂ and H₂ feed with a molar ratio of 30:70. All tests were performed under identical conditions: a weight hourly space velocity (WHSV) of 10 h⁻¹, a pressure of 20 bar, and a temperature range of 180-300°C. The catalysts evaluated in this study include 15Cu-bTiO₂ (15 wt.% Cu on black TiO₂), 30CubTiO₂, and 15Cu-ZnO-bTiO₂. Initial tests were carried out on 15Cu-bTiO2 and 30Cu-bTiO2 to investigate the effect of copper loading on CO₂ conversion and methanol selectivity. CO2 conversion was comparable for both samples at lower temperatures (180-200°C); however, the 30CubTiO₂ catalyst exhibited higher conversion at temperatures (250°C and attributable to its higher copper content (Figure 1). In contrast, methanol selectivity was not significantly affected by copper loading. As shown in Figure 2, both catalysts exhibited similar selectivity profiles across the entire temperature range. Subsequently, the effect of ZnO addition was studied by testing the 15Cu-ZnO-bTiO₂ catalyst. A reduction in CO₂ conversion was observed at 250°C and 300°C, while conversion remained comparable to the previous catalysts at lower temperatures. Notably, methanol selectivity differed from the unpromoted catalysts. The ZnO-promoted sample maintained high selectivity at low temperatures and demonstrated significantly enhanced selectivity at 250°C and 300°C. These results suggest that ZnO addition improves methanol selectivity by suppressing undesired side reactions, such as the reverse watergas shift (RWGS) reaction.

Conclusion

In this study, Cu-ZnO-bTiO₂ catalyst was tested, in particular, it was studied how Cu-loading and ZnO addition influence the CO₂ conversion and methanol selectivity. Cu-loading results to influencing only the conversion, which increases with the Cu-content, but not the selectivity that remains the same. ZnO addition influences both the CO₂ conversion and the methanol selectivity. Compared to the sample without ZnO, it shows lower CO₂ conversion at higher temperatures and higher methanol selectivity.

Aknowledgment

S.R. acknowledges the funding of the Juan de la Cierva fellowship (grant no. JDC2023-052947-I) by MCIU/AEI/10.13039/501100011033 and FSE+. The consolidated research group Catalysis and Reactor Engineering Group (CREG, T43–23R) has the financial support of Gobierno de Aragón through the European Social Fund – FEDER.

Referencies

- [1] L. Chianese, E. Meloni, V. Vaiano, G. Iervolino, V. Palma, Environmental Challenges and Economical Assessment of Methanol's Production Feedstock, (2024).
- [2] S. Kanuri, S. Roy, C. Chakraborty, S.P. Datta, S.A. Singh, S.J.I.J.o.E.R. Dinda, An insight of CO2 hydrogenation to methanol synthesis: Thermodynamics, catalysts, operating parameters, and reaction mechanism, 46 (2022) 5503-5522.
- [3] M. Bertau, H. Offermanns, L. Plass, F. Schmidt, H.-J. Wernicke, Methanol: the basic chemical and energy feedstock of the future, Springer2014.
- [4]G, Yin; Q, Bi; W, Zhao; J, Xu; T, Lin; F, Huang. Efficient Conversion of CO2 to Methane Photocatalyzed by Conductive Black Titania. 2017.

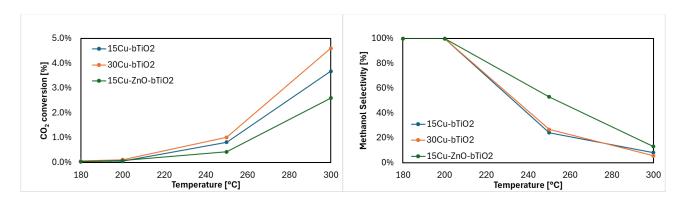


Figure 1 CO2 conversion for the three tested catalysts

Figure 2 methanol selectivity for the three tested catalysts

