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Figure 1. Species profiles in NH3/DEE oxidation depend on .
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Figure 2. Reaction Pathway of A) DEE and B) NH3

Figure 3. Sensitivity analysis of A) DEE and B) NH3.
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The oxidation of both fuels shifts to lower temperatures as the equivalence ratio (λ) increases. This effect is especially pronounced at higher λ values, with a 

notable temperature drop observed for NH₃ when λ is below 1.

Radical pool dynamics plays a key role in NH₃ oxidation, with OH and O radicals being the primary contributors. Additionally, interactions with DEE-derived 

species have been observed to enhance the oxidation process.

Variations in the equivalence ratio (λ) influence the prominence of specific reaction pathways, a trend observed in both fuels.

A kinetic model has been developed, offering reasonably accurate predictions across a wide range of conditions.
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Ammonia (NH₃) is a carbon-free fuel with strong potential for clean 
energy systems, though its low reactivity limits practical use.

Blending  with diethyl ether 
(DEE), a highly reactive 

oxygenated fuel, enhances 
ignition. This fuel mixture 

offers a promising enhances 
in key parameters such as 
ignition delay time (IDT) 

and laminar burning 
velocity (LBV). 

Ammonia (NH₃) is a carbon-free fuel with strong potential for low-emission 
energy systems. However, its combustion is hindered by poor thermochemical 

properties, such as high ignition temperature, low flame speed, and narrow 
flammability limits, as well as the formation of significant NOₓ emissions.
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Figure 1. NH3 profiles.
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