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A flow reactor study of NH,;/DEE oxidation
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Introduction

Ammonia (NH;) is a carbon-free fuel with strong potential for clean _ _ _ _
energy systems, though its low reactivity limits practical use. Detalled kinetic mechanism

Methodology

Glarborg et al. (2018)!

Flow Reactor Tran et al. (2017) 2

Ammonia (NH;3) is a carbon-free fuel with strong potential for low-emission
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energy systems. However, its combustion is hindered by poor thermochemical o . ; — « Shrestha et al. (2022)3
properties, such as high ignition temperature, low flame speed, and narrow @ AU ‘
flammability limits, as well as the formation of significant NO, emissions. 9 )
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Figure 1. NH; protfiles.
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Figure 1. Species profiles in NH,/DEE oxidation depend on A. Figure 3. Sensitivity analysis of A) DEE and B) NHs.

4 Conclusion

The oxidation of both fuels shifts to lower temperatures as the equivalence ratio (A) increases. This effect is especially pronounced at higher A values, with a
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notable temperature drop observed for NH; when A is below 1.

Radical pool dynamics plays a key role in NH; oxidation, with OH and O radicals being the primary contributors. Additionally, interactions with DEE-derived
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species have been observed to enhance the oxidation process.

Variations in the equivalence ratio (A) influence the prominence of specific reaction pathways, a trend observed in both fuels.
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A kinetic model has been developed, offering reasonably accurate predictions across a wide range of conditions.
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