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• This work presents the 
results of CO₂ methanation 
in a fixed-bed reactor using 
the different catalysts listed 
in Table 1. The study 
involves the influence of 
temperature and the partial 
pressure of the reactant 
gases in the feed, serving as 
a preliminary step toward 
future experiments using 
real biogas under elevated 
pressure.

• The experiments were 
conducted in a fixed-bed 
reactor (Figure 1) under the 
experimental conditions 
summarized in Table 2. CO₂ 
methanation proceeds via 
the Sabatier reaction (r. 1).

Catalyst load (g) 0.5
Inert solid (SiC) load (g) 19

Temperature (°C) 250, 275, 300, 325, 350, 
375, 400

H2:CO2 ratio 2:1, 4:1, 6:1
Reactants:inerts ratio 9:1
Total volumetric flow 

(mLSTP/min) 250

Bed height (cm) 12 
Reactor inner diameter 

(mm) 13

Thermocouple height 
(from the porous plate) (cm) 1, 3, 6, 9, 12
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Catalyst Main Active Phase ϕp (µm)

A 25 %w Nickel 100-200

B 20 %w Nickel 100-200

C 2 %w Ruthenium 2000

D 1.97 %w Ruthenium 2000

Table 1. Catalysts used throughout this work

Table 2. Experimental conditions
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Figure 1. Schematic of the 
experimental reactor used
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CO2 + 4H2  CH4 + 2H2O
ΔHr298K=-165 kJ/kmol (r.1)
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Figure 3. CO2 conversion vs time on 
stream (TOS) for catalyst A at different 

H2:CO2 ratios.
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The nickel-based catalysts (A and B) exhibited the highest 
activity, CO2 conversion, and CH4 yield. In contrast, the 
ruthenium-based catalysts (C and D) showed a significant 
deactivation, negatively affecting both conversion and 
methane yield. A positive effect on methane yields was 
observed when operating with an over-stoichiometric 
H₂:CO₂ ratio.

Table  3. SEM-based elemental mapping for catalysts A and B. Color intensity indicates a higher concentration of the element. 
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Table  6. SEM-based elemental mapping for 
catalysts C

As shown in Table 6, since the catalyst's active 
sites are located on the outer surface of the 
sphere, any detachment of this layer due to 
erosion or similar effects can result in the loss 
of the active phase, thereby reducing the overall 
catalytic activity.

Nickel-based catalysts present a high specific 
surface area compared to that of the 
ruthenium-based ones. In that case, the much 
lower active surface area might be related to 
the fact that only the outer surface of the 
sphere is catalytically active.

When analyzing the composition of the 
catalysts, it is observed that catalyst A has a 
slightly higher Ni content than catalyst B. Ru-
based catalysts contain comparable Ru 
loadings. It is worth noting that catalyst C 
also contains Ce, which helps reduce coke 
deposits on the surface.
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Figure 4. Temperature profile along the bed 
for catalyst A under stoichiometric 

reactant ratio during a test at different 
temperatures
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Figure 2. Methane yield vs time on stream (TOS) 
for the catalysts included in this study at different 
operating temperatures. The methane selectivity 

of the catalysts is close to unity at all 
temperatures.
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Table 5. Specific surface area of the catalysts by the BET method

Catalyst A B C D
BET (m2/g) 47.714 110.648 10.189 12.855

40 μm40 μm 40 μm
40 μm

Table 4. Composition analysis of each catalyst by XRF
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