Descriptor-based Structural Similarity and Neural ODEs for Multimodal Diffeomorphic Registration

Salvador Rodríguez-Sanz*, Mónica Hernández

Computer Science for Complex System Modeling (COS2MOS), Universidad de Zaragoza - I3A

*Corresponding authors: srodsanz@unizar.es, mhg@unizar.es

MOTIVATION

Diffeomorphic registration is a task in medical image analysis whose goal is finding a dense non-rigid transformation that spatially aligns two given images, referred to as moving and fixed. Registration is parametrized by a quasi-time varying flow encoded by a **Neural ODE** [1]

$$\frac{\partial \Phi}{\partial t}(t,x) = v_{ heta}(\Phi(t,x)), \; ext{ such that } \; \Phi(0,\cdot) = \operatorname{Id}_{\Omega}.$$

We address diffeomorphic registration on **a multimodal setting**. This setting is challenged by: (1) Poor generalization of gradient descent or second-order methods; (2) Intrinsic miscorrespondence in local features; (3) Matching sparseness due to gradient miscorrespondence. We compute dense descriptors by **spatial self-similarity** [3] in **gradient and texture**, and **robust to noise**.

METHOD

Neural ODE [1] encodes the flow field and is trained on **Euler solver on instance-specific optimization**

$$\mathcal{L}_{ ext{NODEO}} = \mathcal{S}(I_0 \circ arphi^*, I_1) + \lambda_J \mathcal{L}_J + \lambda_{ ext{grad}} \mathcal{L}_{ ext{grad}} + \lambda_{ ext{mag}} \mathcal{L}_{ ext{mag}}$$

This parametrization exploits the benefits of numerical optimization methods with **fast function evaluations** of deep learning networks on GPUs.

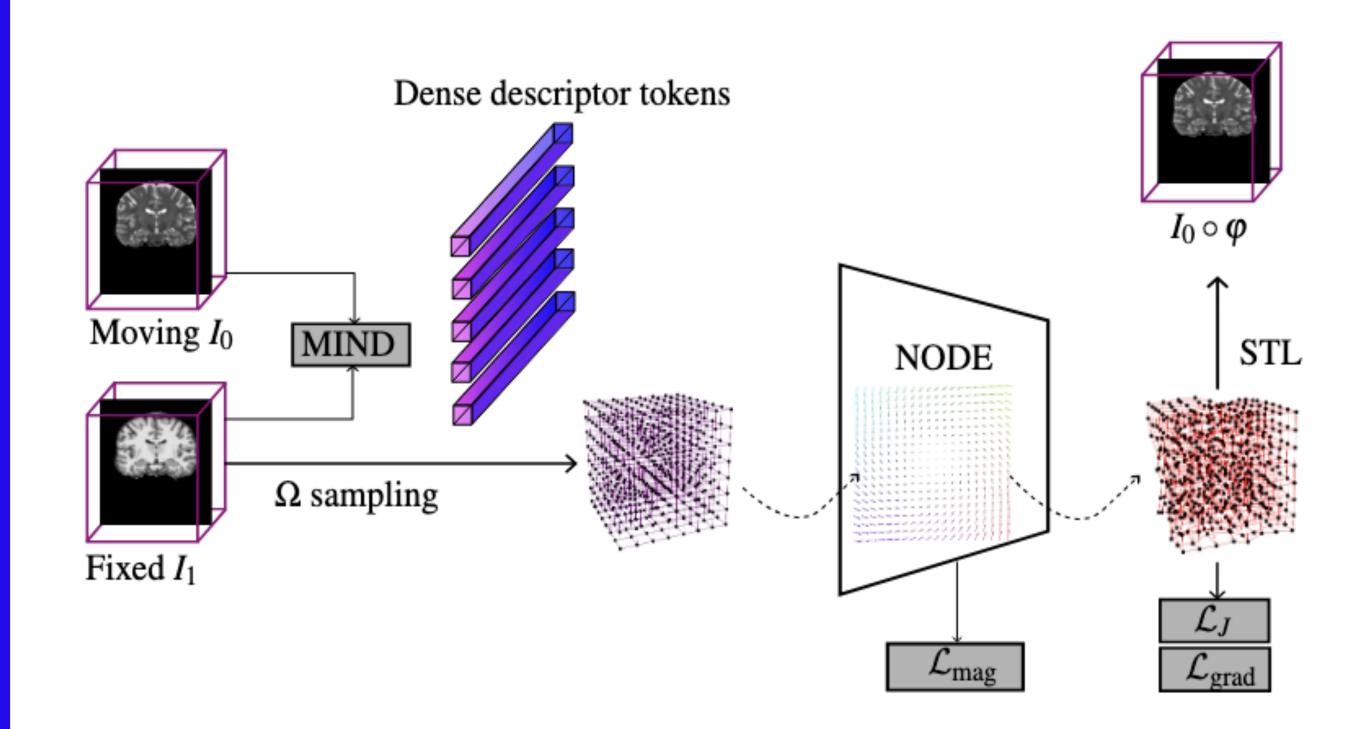


Figure 1. Multimodal registration by Neural ODEs. The pairwise method uses a differentiable sampler (Spatial Transformer, STL) to interpolate on the image domain.

RESULTS

We optimize the registration result by computing distances on the sum of square differences on descriptor tokens [3].

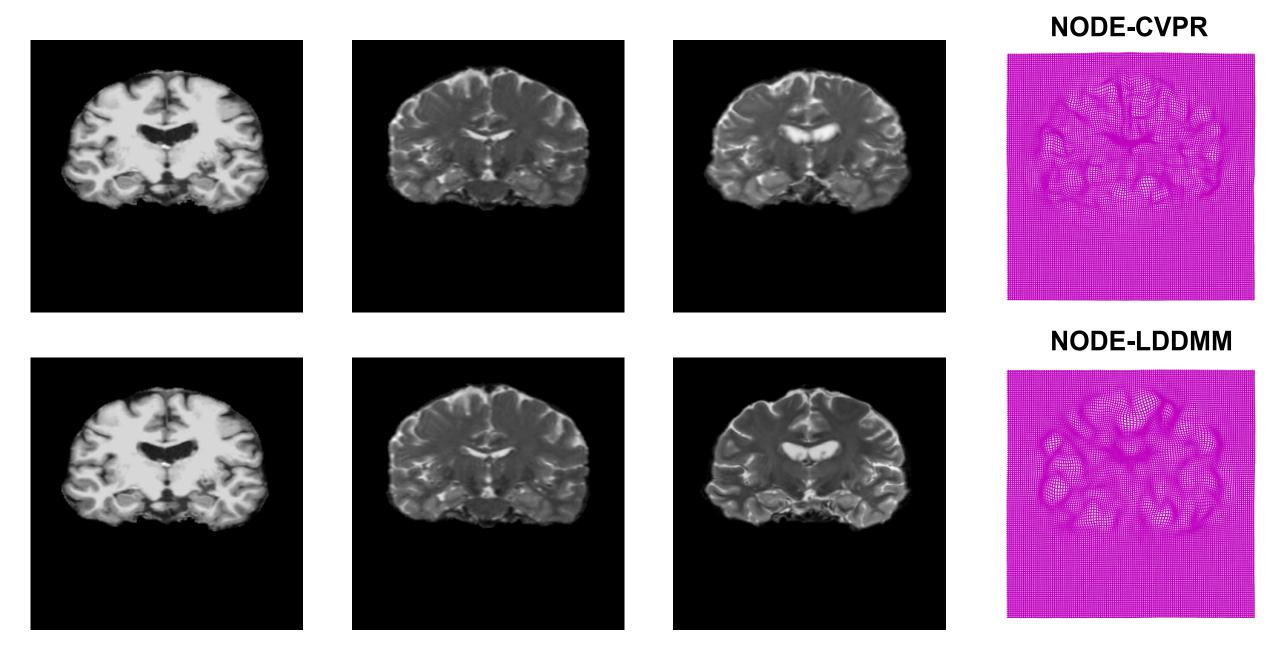


Figure 2. Qualitative registration results. Comparison on the same scan.

T1-T2 OASIS-3 Test Set			
Baseline	DSC (%) ↑	Sum $ J_{\varphi} \leq 0 \downarrow$	$ $ % of $ J_{\varphi} \leq 0 \downarrow$
ANTs-SyN	68.75 ± 2.55	0	0
NiftyReg [44]	70.93 ± 1.50	0	0
NODE + Similarity $S(\cdot, \cdot)$	DSC (%) ↑	Sum $ J_{\varphi} \leq 0 \downarrow$	$ $ % of $ J_{\varphi} \leq 0 \downarrow$
NODE + MIND [21]	75.64 ± 1.70	0	0
NODE-LDDMM + MIND [23]	75.10 ± 2.11	0	0
NODE + Local MI [46]	70.49 ± 3.80	0	0
NODE + Global MI [46]	44.90 ± 14.40	$2.94 \cdot 10^{-3}$	$1.01 \cdot 10^{-6}$
NODE + NGF [19]	72.40 ± 4.12	0	0

Figure 3. Quantitative evaluation results. Comparison on the same scan with the NODE and PDE-constrained framework.

ACKNOWLEDGEMENTS

This work has been supported with the funding from Ministerio de Ciencia, Innovación y Universidades Trust-BEyE PID2022-138703OB-I00, Gobierno de Aragón by PROY-B50-24 from Orden ECU/1871/2023 and the Carlos III Health Institute RD24/0007/022. Salvador Rodriguez Sanz is supported by Gobierno de Aragón predoctoral grant (2024-2028) and is member of COS2MOS T64_23R.

REFERENCES

[1] Yifan Wu, Tom Z Jiahao, Jiancong Wang, Paul A Yushkevich, M Ani Hsieh, and James C Gee. Nodeo: A neural ordinary differential equation based optimization framework for deformable image registration. In Proceedings of the IEEE/CVF Con-ference on Computer Vision and Pattern Recognition, pages 20804–20813, 2022.

[2] Monica Hernandez. Pde-Iddmm meets nodes: Introducing neural ordinary differential equation solvers in pde-constrained large deformation diffeomorphic metric mapping. Journal of Computational Science, 85:102507, 2025. ISSN 1877-7503. doi: https://doi.org/10.1016/j.jocs.2024.102507

[3] Mattias P. Heinrich, Mark Jenkinson, Manav Bhushan, Tahreema Matin, Fergus V. Gleeson, Sir Michael Brady, and Julia A. Schnabel. Mind:Modality independent neighbourhood descriptor formulti-modal deformable registration. Medical ImageAnalysis, 16(7):1423–1435, 2012. ISSN 1361-8415.