
Results and evaluation

XIV JORNADA DE JÓVENES INVESTIGADORES/AS DEL I3A

Pedro Jose Perez1 Nestor Monzon Adolfo Muñoz
Universidad de Zaragoza

Techniques for Real-Time Spectral Rendering

● RGB rendering is the most common and popular way to generate images in Computer Graphics. It discretizes the entire visual spectrum into three
colours: Red, Green, and Blue, matching our visual system. This traditional RGB rendering oftenly struggles simulating wavelength-dependent
phenomena, such as iridescence or participating media scattering, introducing error.

● Spectral rendering, on the other hand, takes into account the entire visual spectrum (~400 nm to ~800 nm) to synthesize images, at the cost of having
to deal with many more samples, slower than compared to just three colours.

● While good for offline rendering (VFX, marketing, architecture, etc.) where time constraints are not relevant, spectral rendering’s need for more samples
introduces prohibitive costs in both memory usage and computational time for real-time rendering (videogames, virtual reality, etc.), where 30-120
images need to be generated every second.

● We devise a method that enables the usage of spectral rendering in real-time contexts minimally affecting time and memory consumption by adapting
previously existing techniques, such as reflectance upsampling, into real-time contexts. We also prove its compatibility with similar rendering methods.

Key idea: Can we use RGB assets in spectral rendering?

We take the work of Jakob and Hanika (2019) as our starting point. They
upsample the entire sRGB gamut into spectral responses.

Our implementation
We implement our real-time version as an OpenGL renderer from scratch. We
decided to implement a multipass deferred pipeline, illustrated here:

RGB texture values LUT coefficients c0, c1, c2

+

𝒇(𝛌)
Spectral responses

They achieve so via lightweight look-up tables (~6MiB) and cheap
formulas that require only 6 floating-point operations. We recognized
the potential that their technique had for real-time contexts.

Geometry
Pass

Reflectance +
other data

+

Depth Buffer

Scene (RGB)

Lighting
Pass

Additionally, we support the simulation of several observer sensitivity
curves, being able to simulate several camera types, or the human eye
observer. Same applies to lights, we can load real world data for the
Spectral Power Distribution (SPD) of several measured light emitters.
An adaptation Monzon et al.’s underwater rendering method is supported too.

Look-up tables

𝑳(𝛌)

Observer response

Spectrum to RGB

n wavelengths

Upsampling
happens here!

Our final result

G
ro

un
d

Tr
ut

h
(P

T)
R

G
B

A
bs

.
D

iff
er

en
ce

Sp
ec

tr
al

U

ps
am

pl
in

g
(o

ur
s)

A
bs

.
D

iff
er

en
ce

A
bs

.
D

iff
er

en
ce

N
ai

ve

U
ps

am
pl

in
g

depth = 1m depth = 5m depth = 10m depth = 20m depth = 50m
0

50

0

50

0

50

Reef Scene, Jerlov water Type I, CIE XYZ response curves

Ground Truth (Path Traced)

Our result Image Absolute Difference

R
G

B
Sp

ec
tr

al

U
ps

am
pl

in
g

(o
ur

s)
N

ai
ve

 U
ps

am
pl

in
g

Spheres scene, blue LED Illuminant, CIE XYZ response curves

● We improve error with respect to baseline comparisons in scenes with
wavelength-dependent phenomena (left) and scenes with highly
spiked emission spectra (below).

● We use RGB reflectance textures for spectral rendering!
● 120+ FPS for all tested use cases, real-time ready.

Future work: Upsample
correctly other coefficients
to fully achieve an RGB
material→Spectral result
workflow.

ACKNOWLEDGEMENTS: This work has received funding from the Government of Aragon's
Departamento de Ciencia, Universidad y Sociedad del Conocimiento through the Reference
Research Group "Graphics and Imaging Lab" (ref T34_23R).
Néstor Monzón was supported by a Gobierno de Aragón predoctoral grant (year 2023-2027).

1 : p.perez@unizar.es

