Descriptor-based Structural Similarity and Neural ODEs for Multimodal Diffeomorphic Registration

Autores/as

  • Salvador Rodriguez-Sanz Universidad de Zaragoza - I3A
  • Mónica Hernández

DOI:

https://doi.org/10.26754/jji-i3a.202511930

Resumen

This work proposes a novel learning-based method to address multimodal diffeomorphic registration. Traditional algorithms that address dense registration use numerical optimization solvers on intensity-based similarity metrics, so they work best in the monomodal setting. This work tackles this task by modality-agnostic descriptors which encode structural self-similarity and a Neural Ordinary Differential Equation (Neural ODE) encoding the dynamics of the estimated registration, achieving state-of-the-art smoothness and registration accuracy.

Mostras las descargas

Los datos de descarga todavía no están disponibles.

Descargas

Publicado

2025-07-28

Número

Sección

Artículos (Tecnologías de la Información y las Comunicaciones)

Cómo citar

Rodriguez-Sanz, S., & Hernández, M. (2025). Descriptor-based Structural Similarity and Neural ODEs for Multimodal Diffeomorphic Registration. Jornada De Jóvenes Investigadores Del I3A, 13. https://doi.org/10.26754/jji-i3a.202511930