Message Passing is all you need!
DOI:
https://doi.org/10.26754/jji-i3a.202511959Resumen
This study presents a novel approach to deepening the physical understanding of message passing architectures within simulations of physical systems. By tailoring the design to the underlying nature of hyperbolic, parabolic, and elliptic partial differential equations (PDEs), the method ensures effective information propagation throughout the computational domain. This alignment between Graph Neural Network (GNN) architecture and the governing physical principles enhances both the accuracy and robustness of simulations, enabling more efficient and high-fidelity modeling across diverse physical regimes.
Mostras las descargas
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Lucas Tesan, Mikel Martínez Iparraguirre, Pedro Martins, David González, Elías Cueto

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.