EPDIFF-JF-NET: Adjoint Jacobi Fields for Diffeomorphic Registration Networks
DOI:
https://doi.org/10.26754/jjii3a.202410613Abstract
This paper presents a deep learning unsupervised
approach for diffeomorphic image registration
called EPDiff-JF-Net. We propose a novel parallel
transport layer to compute the gradients necessary
for training with adjoint Jacobi fields. We test our
method on two independent brain MRI datasets and
obtain state-of-the-art results.
Display downloads
Download data is not yet available.
Downloads
Published
2024-07-17
Issue
Section
Artículos (Tecnologías de la Información y las Comunicaciones)
License
Copyright (c) 2024 Ubaldo Ramon Julvez, Mónica Hernández Giménez, Elvira Mayordomo Cámara

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Ramon Julvez, U., Hernández Giménez, M., & Mayordomo Cámara, E. (2024). EPDIFF-JF-NET: Adjoint Jacobi Fields for Diffeomorphic Registration Networks. Jornada De Jóvenes Investigadores Del I3A, 12. https://doi.org/10.26754/jjii3a.202410613