Transfer Learning-Based Keratoconus Detection from Scheimpflug Images

Authors

  • Juan Casado Universidad de Zaragoza
  • Belen Masia Corcoy Universidad de Zaragoza
  • Alejandra Consejo Vaquero Universidad de Zaragoza

DOI:

https://doi.org/10.26754/jji-i3a.202511944

Abstract

Preclinical detection of keratoconus is crucial to avoid irreversible corneal damage associated to refractive surgery for laser myopia correction. This work proposes, for the first time, a deep learning-based approach for preclinical keratoconus diagnosis using corneal images. Our model, trained in 22,750 images, achieved an overall accuracy of 90.70%, specificity of 94.29% and an AUC of 0.96, outperforming state of the art clinical standards.

Display downloads

Download data is not yet available.

Downloads

Published

2025-07-28

Issue

Section

Artículos (Tecnologías de la Información y las Comunicaciones)

How to Cite

Casado Moreno, J., Masia Corcoy, B., & Consejo Vaquero, A. (2025). Transfer Learning-Based Keratoconus Detection from Scheimpflug Images. Jornada De Jóvenes Investigadores Del I3A, 13. https://doi.org/10.26754/jji-i3a.202511944