Transfer Learning-Based Keratoconus Detection from Scheimpflug Images
DOI:
https://doi.org/10.26754/jji-i3a.202511944Abstract
Preclinical detection of keratoconus is crucial to avoid irreversible corneal damage associated to refractive surgery for laser myopia correction. This work proposes, for the first time, a deep learning-based approach for preclinical keratoconus diagnosis using corneal images. Our model, trained in 22,750 images, achieved an overall accuracy of 90.70%, specificity of 94.29% and an AUC of 0.96, outperforming state of the art clinical standards.
Display downloads
Download data is not yet available.
Downloads
Published
2025-07-28
Issue
Section
Artículos (Tecnologías de la Información y las Comunicaciones)
License
Copyright (c) 2025 Juan Casado Moreno, Belen Masia Corcoy, Alejandra Consejo Vaquero

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
Casado Moreno, J., Masia Corcoy, B., & Consejo Vaquero, A. (2025). Transfer Learning-Based Keratoconus Detection from Scheimpflug Images. Jornada De Jóvenes Investigadores Del I3A, 13. https://doi.org/10.26754/jji-i3a.202511944